Published on in Vol 23, No 8 (2021): August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/26162, first published .
Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey

Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey

Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey

Journals

  1. Saw S, Ng K. Current challenges of implementing artificial intelligence in medical imaging. Physica Medica 2022;100:12 View
  2. Schaarup J, Aggarwal R, Dalsgaard E, Norman K, Dollerup O, Ashrafian H, Witte D, Sandbæk A, Hulman A. Perception of artificial intelligence-based solutions in healthcare among people with and without diabetes: A cross-sectional survey from the health in Central Denmark cohort. Diabetes Epidemiology and Management 2023;9:100114 View
  3. Varhol R, Randall S, Boyd J, Robinson S. Australian general practitioner perceptions to sharing clinical data for secondary use: a mixed method approach. BMC Primary Care 2022;23(1) View
  4. Anderson J, McCradden M, Stephenson E. Response to Open Peer Commentaries: On Social Harms, Big Tech, and Institutional Accountability. The American Journal of Bioethics 2022;22(10):W6 View
  5. Kassam I, Ilkina D, Kemp J, Roble H, Carter-Langford A, Shen N. Patient Perspectives and Preferences for Consent in the Digital Health Context: State-of-the-art Literature Review. Journal of Medical Internet Research 2023;25:e42507 View
  6. Horsham C, Janda M, Kerr M, Soyer H, Caffery L. Consumer perceptions on privacy and confidentiality in dermatology for 3D total‐body imaging. Australasian Journal of Dermatology 2023;64(1):118 View
  7. Macri R, Roberts S. The Use of Artificial Intelligence in Clinical Care: A Values-Based Guide for Shared Decision Making. Current Oncology 2023;30(2):2178 View
  8. Caffery L, Janda M, Miller R, Abbott L, Arnold C, Caccetta T, Guitera P, Shumack S, Fernández‐Peñas P, Mar V, Soyer H. Informing a position statement on the use of artificial intelligence in dermatology in Australia. Australasian Journal of Dermatology 2023;64(1) View
  9. Kedar S, Khazanchi D. Neurology education in the era of artificial intelligence. Current Opinion in Neurology 2023;36(1):51 View
  10. Cumyn A, Ménard J, Barton A, Dault R, Lévesque F, Ethier J. Patients’ and Members of the Public’s Wishes Regarding Transparency in the Context of Secondary Use of Health Data: Scoping Review. Journal of Medical Internet Research 2023;25:e45002 View
  11. Fritsch S, Blankenheim A, Wahl A, Hetfeld P, Maassen O, Deffge S, Kunze J, Rossaint R, Riedel M, Marx G, Bickenbach J. Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. DIGITAL HEALTH 2022;8:205520762211167 View
  12. Jeyakumar T, Younus S, Zhang M, Clare M, Charow R, Karsan I, Dhalla A, Al-Mouaswas D, Scandiffio J, Aling J, Salhia M, Lalani N, Overholt S, Wiljer D. Preparing for an Artificial Intelligence–Enabled Future: Patient Perspectives on Engagement and Health Care Professional Training for Adopting Artificial Intelligence Technologies in Health Care Settings. JMIR AI 2023;2:e40973 View
  13. van der Zander Q, van der Ende - van Loon M, Janssen J, Winkens B, van der Sommen F, Masclee A, Schoon E. Artificial intelligence in (gastrointestinal) healthcare: patients’ and physicians’ perspectives. Scientific Reports 2022;12(1) View
  14. Hartzler A, Xie S, Wedgeworth P, Spice C, Lybarger K, Wood B, Duber H, Hsieh G, Singh A, Cragg K, Goomansingh S, Simons S, Wong J, Yancey-Watson A. Integrating patient voices into the extraction of social determinants of health from clinical notes: ethical considerations and recommendations. Journal of the American Medical Informatics Association 2023;30(8):1456 View
  15. Schaarup J, Aggarwal R, Dalsgaard E, Norman K, Dollerup O, Ashrafian H, Witte D, Sandbæk A, Hulman A. Perception of Artificial Intelligence in Healthcare Among People with and Without Diabetes: A Cross-Sectional Survey from the Health in Central Denmark Cohort. SSRN Electronic Journal 2022 View
  16. Nicolas J, Pitaro N, Vogel B, Mehran R. Artificial Intelligence – Advisory or Adversary?. Interventional Cardiology: Reviews, Research, Resources 2023;18 View
  17. Kunze K, Jang S, Fullerton M, Vigdorchik J, Haddad F. What’s all the chatter about?. The Bone & Joint Journal 2023;105-B(6):587 View
  18. Warner F, Tong B, McDougall J, Martin Ginis K, Rabchevsky A, Cragg J, Kramer J. Perspectives on Data Sharing in Persons With Spinal Cord Injury. Neurotrauma Reports 2023;4(1) View
  19. Vo V, Chen G, Aquino Y, Carter S, Do Q, Woode M. Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis. Social Science & Medicine 2023;338:116357 View
  20. Xu T, Ma Y, Pan T, Chen Y, Liu Y, Zhu F, Zhou Z, Chen Q. Visual Analytics of Multidimensional Oral Health Surveys: Data Mining Study. JMIR Medical Informatics 2023;11:e46275 View
  21. Ferro M, Falagario U, Barone B, Maggi M, Crocetto F, Busetto G, Giudice F, Terracciano D, Lucarelli G, Lasorsa F, Catellani M, Brescia A, Mistretta F, Luzzago S, Piccinelli M, Vartolomei M, Jereczek-Fossa B, Musi G, Montanari E, Cobelli O, Tataru O. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement. Diagnostics 2023;13(13):2308 View
  22. Rockwell H, Cyphers E, Makary M, Keller E. Ethical Considerations for Artificial Intelligence in Interventional Radiology: Balancing Innovation and Patient Care. Seminars in Interventional Radiology 2023;40(03):323 View
  23. Elvas L, Ferreira J, Dias M, Rosário L. Health Data Sharing towards Knowledge Creation. Systems 2023;11(8):435 View
  24. Borondy Kitts A. Patient Perspectives on Artificial Intelligence in Radiology. Journal of the American College of Radiology 2023;20(9):863 View
  25. Ibba S, Tancredi C, Fantesini A, Cellina M, Presta R, Montanari R, Papa S, Alì M. How do patients perceive the AI-radiologists interaction? Results of a survey on 2119 responders. European Journal of Radiology 2023;165:110917 View
  26. Adus S, Macklin J, Pinto A. Exploring patient perspectives on how they can and should be engaged in the development of artificial intelligence (AI) applications in health care. BMC Health Services Research 2023;23(1) View
  27. Deisenhofer A, Barkham M, Beierl E, Schwartz B, Aafjes-van Doorn K, Beevers C, Berwian I, Blackwell S, Bockting C, Brakemeier E, Brown G, Buckman J, Castonguay L, Cusack C, Dalgleish T, de Jong K, Delgadillo J, DeRubeis R, Driessen E, Ehrenreich-May J, Fisher A, Fried E, Fritz J, Furukawa T, Gillan C, Gómez Penedo J, Hitchcock P, Hofmann S, Hollon S, Jacobson N, Karlin D, Lee C, Levinson C, Lorenzo-Luaces L, McDanal R, Moggia D, Ng M, Norris L, Patel V, Piccirillo M, Pilling S, Rubel J, Salazar-de-Pablo G, Saunders R, Schleider J, Schnurr P, Schueller S, Siegle G, Uher R, Watkins E, Webb C, Wiltsey Stirman S, Wynants L, Youn S, Zilcha-Mano S, Lutz W, Cohen Z. Implementing precision methods in personalizing psychological therapies: Barriers and possible ways forward. Behaviour Research and Therapy 2024;172:104443 View
  28. Hendricks-Sturrup R, Simmons M, Anders S, Aneni K, Wright Clayton E, Coco J, Collins B, Heitman E, Hussain S, Joshi K, Lemieux J, Lovett Novak L, Rubin D, Shanker A, Washington T, Waters G, Webb Harris J, Yin R, Wagner T, Yin Z, Malin B. Developing Ethics and Equity Principles, Terms, and Engagement Tools to Advance Health Equity and Researcher Diversity in AI and Machine Learning: Modified Delphi Approach. JMIR AI 2023;2:e52888 View
  29. Fazakarley C, Breen M, Leeson P, Thompson B, Williamson V. Experiences of using artificial intelligence in healthcare: a qualitative study of UK clinician and key stakeholder perspectives. BMJ Open 2023;13(12):e076950 View
  30. Baines R, Stevens S, Austin D, Anil K, Bradwell H, Cooper L, Maramba I, Chatterjee A, Leigh S. Patient and Public Willingness to Share Personal Health Data for Third-Party or Secondary Uses: Systematic Review. Journal of Medical Internet Research 2024;26:e50421 View
  31. Urbano V, Bartolomucci F, Azzone G. Determinants for university students’ location data sharing with public institutions during COVID-19: The Italian case. Data & Policy 2024;6 View
  32. Okenyi E, Walker L. Advantages and challenges of AI in enhancing healthcare equity. Prescriber 2024;35(1):5 View
  33. Lysen F, Wyatt S. Refusing participation: hesitations about designing responsible patient engagement with artificial intelligence in healthcare. Journal of Responsible Innovation 2024;11(1) View
  34. Aspell N, Goldsteen A, Renwick R. Dicing with data: the risks, benefits, tensions and tech of health data in the iToBoS project. Frontiers in Digital Health 2024;6 View
  35. Fazakarley C, Breen M, Thompson B, Leeson P, Williamson V. Beliefs, experiences and concerns of using artificial intelligence in healthcare: A qualitative synthesis. DIGITAL HEALTH 2024;10 View
  36. Braunack‐Mayer A, Adams C, Nettel‐Aguirre A, Fabrianesi B, Carolan L, Beilby J, Flack F. Community views on the secondary use of general practice data: Findings from a mixed‐methods study. Health Expectations 2024;27(1) View
  37. Frost E, Bosward R, Aquino Y, Braunack-Mayer A, Carter S. Facilitating public involvement in research about healthcare AI: A scoping review of empirical methods. International Journal of Medical Informatics 2024;186:105417 View
  38. Messelink M, Fadaei S, Verhoef L, Welsing P, Nijhof N, Westland H. Rheumatoid arthritis patients’ perspective on the use of prediction models in clinical decision-making. Rheumatology 2025;64(3):1045 View
  39. Rusinovich Y, Vareiko A, Shestak N. Human-centered Evaluation of AI and ML Projects. Web3 Journal: ML in Health Science 2024;1(2):d150224 View
  40. Rusinovich Y, Rusinovich V. Do You Consent to the Use of Your Biological Data for Training ML and AI Models? Online Survey Targeting Clinicians and Researchers.. Web3 Journal: ML in Health Science 2024;1(1) View
  41. Wang B, Asan O, Liao T, Mansouri M. The Future Role of Clinical Artificial Intelligence: View of Chronic Patients. IEEE Transactions on Technology and Society 2024;5(1):71 View
  42. Sisk B, Antes A, Lin S, Nong P, DuBois J. Validating a novel measure for assessing patient openness and concerns about using artificial intelligence in healthcare. Learning Health Systems 2025;9(1) View
  43. de Luzuriaga A. Improving data participation for the development of artificial intelligence in dermatology. Clinics in Dermatology 2024;42(5):447 View
  44. Albinsaad L, Alkhawajah A, Abuageelah B, Alkhalaf R, Alfaifi M, Oberi I, Alnajjad A, Albalawi I, Alessa M, Khan A. The Saudi Community View of the Use of Artificial Intelligence in Health Care. Annals of African Medicine 2024 View
  45. O’Neill C, Duckworth E, Shah R, Jayakumar P. Evaluating Patient Perceptions of Smartphone Use for Active and Passive Collection of Health Data. Current Orthopaedic Practice 2024;35(6):250 View
  46. Khalid U, Stoev H, Yavorov B, Ansari A. The Expansion of Artificial Intelligence in Modifying and Enhancing the Current Management of Abdominal Aortic Aneurysms: A Literature Review. Cureus 2024 View
  47. Fujita M, Dai Y, Kitadai A, Lugo S, Cheng Z, Nishino N. Survey on Stakeholder Cooperative Behavior for Designing Voluntary Medical Data Provision Motivation Mechanisms. Procedia CIRP 2024;126:14 View
  48. Moyosore Adegboye , Sneha Vaidhyam , Kuo-Ting Huang . Generative AI-ChatGPT’s Impact in Health Science Libraries. Proceedings of the ALISE Annual Conference 2024 View
  49. Singh S, Shukla R. Artificial Intelligence: The Latest Advances in the Diagnosis of Bladder Cancer. Journal of Urologic Oncology 2024;22(3):268 View
  50. Chen Y, Lehmann C, Malin B. Digital Information Ecosystems in Modern Care Coordination and Patient Care Pathways and the Challenges and Opportunities for AI Solutions. Journal of Medical Internet Research 2024;26:e60258 View
  51. Wahlich C, Chandrasekaran L, Chaudhry U, Willis K, Chambers R, Bolter L, Anderson J, Shakespeare R, Olvera-Barrios A, Fajtl J, Welikala R, Barman S, Egan C, Tufail A, Owen C, Rudnicka A. Patient and practitioner perceptions around use of artificial intelligence within the English NHS diabetic eye screening programme. Diabetes Research and Clinical Practice 2025;219:111964 View
  52. Yen D, Dorussen H, Pickering S, Hansen M, Scotto T, Reifler J. Public attitudes towards disclosing personal and anonymous health-related data and information. British Journal of Healthcare Management 2025;31(1):1 View
  53. Arango S, Flynn J, Zeitlin J, Payne S, Miller A, Weir T. Patient Perceptions of Artificial Intelligence in Hand Surgery: A Survey of 511 Patients Presenting to a Hand Surgery Clinic. The Journal of Hand Surgery 2025;50(11):1410.e1 View
  54. Demirci A, Aydın H. The effect of different adipose tissue measurements on clinical prognosis in bladder cancer patients undergoing radical cystectomy: preliminary results. Abdominal Radiology 2025;50(9):4224 View
  55. Coulibaly D, Bayani A, Sylla B, Motulsky A, Nikiema J, Bosson-Rieutort D. Identifying key characteristics of developed artificial intelligence algorithms to achieve meaningful impact on Canadian healthcare: a scoping review protocol. BMJ Open 2025;15(2):e094908 View
  56. Davis V, Qiang J, Adekoya MacCarthy I, Howse D, Seshie A, Kosowan L, Delahunty-Pike A, Abaga E, Cooney J, Robinson M, Senior D, Zsager A, Aubrey-Bassler K, Irwin M, Jackson L, Katz A, Marshall E, Muhajarine N, Neudorf C, Garies S, Pinto A. Perspectives on Using Artificial Intelligence to Derive Social Determinants of Health Data From Medical Records in Canada: Large Multijurisdictional Qualitative Study. Journal of Medical Internet Research 2025;27:e52244 View
  57. Moulaei K, Akhlaghpour S, Fatehi F. Patient consent for the secondary use of health data in artificial intelligence (AI) models: A scoping review. International Journal of Medical Informatics 2025;198:105872 View
  58. Xu H, Li X, Jia M, Ma Q, Zhang Y, Liu F, Qin Y, Chen Y, Li Y, Chen X, Xu Y, Li D, Wang D, Huang D, Xiao Q, Zhao Y, Gao S, Qin X, Tao T, Gong T, Wu Q. AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis. Journal of Medical Internet Research 2025;27:e67922 View
  59. Herriger C, Merlo O, Eisingerich A, Arigayota A. Context-Contingent Privacy Concerns and Exploration of the Privacy Paradox in the Age of AI, Augmented Reality, Big Data, and the Internet of Things: Systematic Review. Journal of Medical Internet Research 2025;27:e71951 View
  60. Tirapelli C, Gaêta-Araujo H, Costa E, Scarfe W, Oliveira-Santos C, Fischer K, Grosgogeat B, Szonyi V, Melo P, Ruiz-Marrara J, Bolstad N, Spin-Neto R, Pauwels R. Patient perceptions of artificial intelligence in dental imaging diagnostics: a multicentre survey. Dentomaxillofacial Radiology 2025;54(6):427 View
  61. Yao M, Huang L, Leventhal E, Sun C, Stephen S, Liou L. Leveraging Datathons to Teach AI in Undergraduate Medical Education: Case Study. JMIR Medical Education 2025;11:e63602 View
  62. Azad T, Warman A, McGraw D, Saria S. Lessons from Henrietta Lacks inform a transparency framework to catalyze generative artificial intelligence in medicine. npj Digital Medicine 2025;8(1) View
  63. Dhima A, Choudhary S, Myrick K, Torous J. Patient and clinician opinions on internet search data use in therapy: Insights, considerations, and guidelines for integrating a new digital phenotyping measure. DIGITAL HEALTH 2025;11 View
  64. El-Sayed M, Rawashdeh M, Moossa A, Atfah M, Prajna B, Ali M. Patient perspectives on AI in radiology: Insights from the United Arab Emirates. Clinical Imaging 2025;125:110543 View
  65. Kolasa K, Baliga-Nicholson K, Wasniewski J, Laskowska N, Milian K, Ciupek D. Shall we call for a doctor? How to build trust toward AI in healthcare: Insights from a Polish cross-sectional preference study. Health Policy 2025;159:105379 View
  66. Dontchos B, Dodelzon K, Bhole S, Edmonds C, Mullen L, Parikh J, Daly C, Epling J, Christensen S, Grimm L. Opinions and Preferences Regarding Artificial Intelligence Use in Health Care Delivery: Results From a National Multisite Survey of Breast Imaging Patients. Journal of the American College of Radiology 2025;22(9):1032 View
  67. Mayo-Yáñez M, Rameau A, Vaira L, Louvrier M, Sanchez Barrueco A, Alcalá-Rueda I, García-Curdi F, Mejuto-Torreiro L, Klein-Rodríguez A, Herranz-Larrañeta J, Maza-Solano J, Saibene A, Pugliese G, Briganti G, Chiesa-Estomba C, Simon F, Hans S, Baudouin R, Rodriguez A, Dequanter D, Saussez S, Radulesco T, Michel J, Gengler I, Naunheim M, Cammaroto G, De Vito A, Iannella G, Favier V, Carsuzaa F, Barillari M, Maniaci A, Lechien J. Patient Perceptions of Artificial Intelligence in Otolaryngology—Head and Neck Surgery: An International Study. Ear, Nose & Throat Journal 2025 View
  68. Lawrence K, Kuram V, Levine D, Sharif S, Polet C, Malhotra K, Owens K. Informed Consent for Ambient Documentation Using Generative AI in Ambulatory Care. JAMA Network Open 2025;8(7):e2522400 View
  69. McGhee K, Barrett D, Safarini O, Elkassem A, Eddins J, Smith A, Rothenberg S. Patient Preferences for Artificial Intelligence in Medical Imaging: A Single-Center Cross-Sectional Survey. Journal of Imaging Informatics in Medicine 2025 View
  70. Zhang J, Yan M, Tang Z, He Q, Bi Y, Cai Y, Zhang Q, Yu K, Yang K, Chen J, Yang D. Blockchain Empowerment in Healthcare: A Survey. IEEE Internet of Things Journal 2025;12(16):32516 View
  71. Rajan M, Furgal A, Kadri R, Arman O, Panzer K, Wicker D, McKee M, Plegue M, Degner A, Buis L. Exploring the Utility of Digital Voice Assistants for Primary Care Patients, Including Those With Physical and Visual Disabilities: Cross-Sectional Study. JMIR mHealth and uHealth 2025;13:e66185 View
  72. Huang Y, Zeng S, Lin J, Mao Z, Zhang Q, Feng G, Ou Q. Parents’ understanding and attitudes toward the application of AI in pediatric healthcare: a cross-sectional survey study. Frontiers in Public Health 2025;13 View
  73. Olsen Q, Dyda A, Woods L, Lobo E, Eden R, Krahe M, Richards B, Pather N, McGee L, Sullivan C, Pole J. Worldwide willingness to share health data high but privacy, consent and transparency paramount, a meta-analysis. npj Digital Medicine 2025;8(1) View
  74. Yao H, Liu Y. Evolutionary game analysis of healthcare data governance in China’s experimental data trading pilots. npj Digital Medicine 2025;8(1) View
  75. Pokorny M, Liang V, Thorne P, MacFater W, Habib A, Mahadevan M, Holt E. Perspectives of audiologists and hearing screeners in the clinical use of AI in detecting otitis media – a qualitative study. BMC Digital Health 2025;3(1) View
  76. Li C, Li W, Shao Y, Xu Z, Song J, Wang Y. A Scoping Review of Artificial Intelligence-Based Health Education Interventions for Patients with Type 2 Diabetes. Diabetes, Metabolic Syndrome and Obesity 2025;Volume 18:3539 View
  77. Ameri S, Mehran N, Margolies L. Patient perception of artificial intelligence in breast imaging: A pilot survey study. Clinical Imaging 2025;128:110649 View
  78. Malieckal M, Gurtoo A. Mining User Perspectives: Multi Case Study Analysis of Data Quality Characteristics. Information 2025;16(10):920 View
  79. Naeem H. AI and the Complexity of Pain. Philosophy & Technology 2025;38(4) View
  80. Duke S, Sandøe P, Skelly T, Holm S. Supportive but apprehensive: Ambivalent attitudes towards a Danish public health AI and surveillance-driven project. Big Data & Society 2025;12(4) View
  81. Willis K, Shakespeare R, Chandrasekaran L, Chaudhry U, Wahlich C, Chambers R, Bolter L, Anderson J, Olvera‐Barrios A, Fajtl J, Welikala R, Barman S, Mann S, Scanlon P, Habib M, Egan C, Tufail A, Owen C, Rudnicka A. What are the perceptions and concerns of people living with diabetes and National Health Service staff around the potential implementation of AI‐assisted screening for diabetic eye disease?. Diabetic Medicine 2026;43(1) View
  82. Zhu X, Stroud A, Minteer S, Yoo D, Ridgeway J, Mooghali M, Miller J, Barry B. Key information influencing patient decision-making about AI in healthcare: A survey experiment (Preprint). Journal of Medical Internet Research 2025 View
  83. Krahe M, Eden R, Pole J, Richards B, Olsen Q, Dyda A, Lobo E, Pather N, Sullivan C, Woods L. A scientometric review of health data sharing for secondary use: Insights, frontiers and the path ahead. Health Information Management Journal 2025 View
  84. Saasouh W, Ghanem K, Ghanem C, Robinson C, Gupta A, Hasan M, Schostak M, Ismail R. Assessment of patient and physician sentiment on artificial intelligence use in US healthcare. Frontiers in Anesthesiology 2025;4 View
  85. Fee N, Glover L, Bauman R, Crosby D. Patient perceptions on the use of artificial intelligence (AI) in fertility treatment. Human Fertility 2025;28(1) View
  86. Chandrasekaran R, Moustakas E. Patient attitudes toward ambient artificial intelligence scribes in clinical care: insights from a cross-sectional study. Journal of the American Medical Informatics Association 2025 View
  87. Carstens M, Vasisht S, Zhang Z, Barbur I, Reinke A, Maier-Hein L, Hashimoto D, Kolbinger F. Artificial intelligence for surgical scene understanding: a systematic review and reporting quality meta-analysis. npj Digital Medicine 2025 View
  88. Schaarup J, Isaksen A, Norman K, Bjerg L, Hulman A. Trust in large language model-based solutions in healthcare among people with and without diabetes: a cross-sectional survey from the Health in Central Denmark cohort. BMJ Digital Health & AI 2025;1(1):e000090 View

Books/Policy Documents

  1. Amofa S, Gao J, Asante-Mensah M, Haruna C, Qi X. Frontiers in Cyber Security. View
  2. Charles W, Delgado B. Blockchain in Life Sciences. View
  3. Druedahl L, Kälvemark Sporrong S. The Law and Ethics of Data Sharing in Health Sciences. View
  4. Arora A, Upadhyay D, Malik I. Computer-Assisted Analysis for Digital Medicinal Imagery. View
  5. Rajchenberg D, Hess R, Lins M, Manor A, Degany O, Shoenfeld Y. AI-Assisted Computational Approaches for Immunological Disorders. View