Journal of Medical Internet Research

The leading peer-reviewed journal for digital medicine, and health & health care in the internet age

Editor-in-Chief:

Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria (Canada)

Rita Kukafka, DrPH, MA, FACMI, Professor, Biomedical Informatics and Sociomedical Sciences; Director, Laboratory for Precision Prevention, Columbia University, NY


Impact Factor 5.03

The Journal of Medical Internet Research (JMIR), now in its 21st year, is the pioneer open access eHealth journal and is the flagship journal of JMIR Publications. It is the leading digital health journal globally in terms of quality/visibility (Impact Factor 2019: 5.03), ranking Q1 in the medical informatics category, and is also the largest journal in the field. The journal focuses on emerging technologies, medical devices, apps, engineering, telehealth and informatics applications for patient education, prevention, population health and clinical care. As a leading high-impact journal in its disciplines (health informatics and health services research), it is selective, but it is now complemented by almost 30 specialty JMIR sister journals, which have a broader scope, and which together receive over 6.000 submissions a year. Peer-review reports are portable across JMIR journals and papers can be transferred, so authors save time by not having to resubmit a paper to different journal but can simply transfer it between journals. 

As an open access journal, we are read by clinicians, allied health professionals, informal caregivers, and patients alike, and have (as with all JMIR journals) a focus on readable and applied science reporting the design and evaluation of health innovations and emerging technologies. We publish original research, viewpoints, and reviews (both literature reviews and medical device/technology/app reviews).

We are also a leader in participatory and open science approaches, and offer the option to publish new submissions immediately as preprints, which receive DOIs for immediate citation (eg, in grant proposals), and for open peer-review purposes. We also invite patients to participate (eg, as peer-reviewers) and have patient representatives on editorial boards.

Be a widely cited leader in the digitial health revolution and submit your paper today!

Recent Articles

Article Thumbnail
Voice Assistants

Voice-controlled intelligent personal assistants (VIPAs), such as Amazon Echo and Google Home, involve artificial intelligence–powered algorithms designed to simulate humans. Their hands-free interface and growing capabilities have a wide range of applications in health care, covering off-clinic education, health monitoring, and communication. However, conflicting factors, such as patient safety and privacy concerns, make it difficult to foresee the further development of VIPAs in health care.

|
Article Thumbnail
Web-based and Mobile Health Interventions

Obesity is a known risk factor for cardiovascular disease risk factors, including hypertension and type II diabetes. Although numerous weight loss interventions have demonstrated efficacy, there is considerably less evidence about the theoretical mechanisms through which they work. Delivering lifestyle behavior change interventions via social media provides unique opportunities for understanding mechanisms of intervention effects. Server data collected directly from web-based platforms can provide detailed, real-time behavioral information over the course of intervention programs that can be used to understand how interventions work.

|
Article Thumbnail
Data Science

Lifestyle diseases, because of adverse health behavior, are the foremost cause of death worldwide. An eCoach system may encourage individuals to lead a healthy lifestyle with early health risk prediction, personalized recommendation generation, and goal evaluation. Such an eCoach system needs to collect and transform distributed heterogenous health and wellness data into meaningful information to train an artificially intelligent health risk prediction model. However, it may produce a data compatibility dilemma. Our proposed eHealth ontology can increase interoperability between different heterogeneous networks, provide situation awareness, help in data integration, and discover inferred knowledge. This “proof-of-concept” study will help sensor, questionnaire, and interview data to be more organized for health risk prediction and personalized recommendation generation targeting obesity as a study case.

|
Article Thumbnail
Theoretical Frameworks and Concepts

Despite the growing popularity of digital health interventions, limitations of traditional behavior change theories and a lack of theory integration hinder theory-driven behavior change applications. In this paper, we aim to review theories relevant to lifestyle behavior change from the broader psychology literature and then integrate these theories into a new theoretical framework called adaptive decision-making to address two specific problems. First, our framework represents lifestyle behaviors at two levels—one of individual daily decisions (action level) and one of larger behavioral episodes (reflection level)—to more closely match the temporal characteristics of lifestyle behaviors and their associated digital data. Second, the framework connects decision-making theories and learning theories to explain how behaviors and cognitive constructs dynamically influence each other, making it a suitable scaffold for building computational models. We map common digital intervention techniques onto the behavioral and cognitive processes in the framework and discuss possible contributions of the framework to both theory development and digital intervention design.

|
Article Thumbnail
Clinical Information and Decision Making

Clinical decision support (CDS) is a valuable feature of electronic health records (EHRs) designed to improve quality and safety. However, due to the complexities of system design and inconsistent results, CDS tools may inadvertently increase alert fatigue and contribute to physician burnout. A/B testing, or rapid-cycle randomized tests, is a useful method that can be applied to the EHR in order to rapidly understand and iteratively improve design choices embedded within CDS tools.

|
Article Thumbnail
JMIR Theme Issue 2020/21: COVID-19 Special Issue

Controlling the COVID-19 outbreak in Brazil is a challenge due to the population’s size and urban density, inefficient maintenance of social distancing and testing strategies, and limited availability of testing resources.

|
Article Thumbnail
Viewpoints and Perspectives

The application of virtual reality has become increasingly extensive as this technology has developed. In dental education, virtual reality is mainly used to assist or replace traditional methods of teaching clinical skills in preclinical training for several subjects, such as endodontics, prosthodontics, periodontics, implantology, and dental surgery. The application of dental simulators in teaching can make up for the deficiency of traditional teaching methods and reduce the teaching burden, improving convenience for both teachers and students. However, because of the technology limitations of virtual reality and force feedback, dental simulators still have many hardware and software disadvantages that have prevented them from being an alternative to traditional dental simulators as a primary skill training method. In the future, when combined with big data, cloud computing, 5G, and deep learning technology, dental simulators will be able to give students individualized learning assistance, and their functions will be more diverse and suitable for preclinical training. The purpose of this review is to provide an overview of current dental simulators on related technologies, advantages and disadvantages, methods of evaluating effectiveness, and future directions for development.

|
Article Thumbnail
Voice Assistants

With the rapid growth of the older adult population worldwide, car accidents involving this population group have become an increasingly serious problem. Cognitive impairment, which is assessed using neuropsychological tests, has been reported as a risk factor for being involved in car accidents; however, it remains unclear whether this risk can be predicted using daily behavior data.

|
Article Thumbnail
Web-based and Mobile Health Interventions

Chronic health conditions are affecting an increasing number of individuals, who experience various symptoms that decrease their quality of life. Digital communication interventions that enable patients to report their symptoms have been shown to positively impact chronic disease management by improving access to care, patient-provider communication, clinical outcomes, and health-related quality of life. These interventions have the potential to prepare patients and health care providers (HCPs) before visits and improve patient-provider communication. Despite the recent rapid development and increasing number of digital communication interventions that have shown positive research results, barriers to realizing the benefits offered through these types of interventions still exist.

|
Article Thumbnail
JMIR Theme Issue 2020/21: COVID-19 Special Issue

The dynamics of the COVID-19 pandemic vary owing to local population density and policy measures. During decision-making, policymakers consider an estimate of the effective reproduction number Rt, which is the expected number of secondary infections spread by a single infected individual.

|
Article Thumbnail
Clinical Information and Decision Making

Effectively and efficiently diagnosing patients who have COVID-19 with the accurate clinical type of the disease is essential to achieve optimal outcomes for the patients as well as to reduce the risk of overloading the health care system. Currently, severe and nonsevere COVID-19 types are differentiated by only a few features, which do not comprehensively characterize the complicated pathological, physiological, and immunological responses to SARS-CoV-2 infection in the different disease types. In addition, these type-defining features may not be readily testable at the time of diagnosis.

|

Preprints Open for Peer-Review

|

Open Peer Review Period:

-

|

Open Peer Review Period:

-

We are working in partnership with