Published on in Vol 22, No 8 (2020): August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/15394, first published .
Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study

Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study

Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study

Journals

  1. Wen A, Wang L, He H, Liu S, Fu S, Sohn S, Kugel J, Kaggal V, Huang M, Wang Y, Shen F, Fan J, Liu H. An aberration detection-based approach for sentinel syndromic surveillance of COVID-19 and other novel influenza-like illnesses. Journal of Biomedical Informatics 2021;113:103660 View
  2. Wang J, Wu S, Guo Q, Lan H, Janne E, Wang L, Zhang J, Wang Q, Song Y, Yang N, Luo X, Zhou Q, Shi Q, Yu X, Ma Y, Mathew J, Ahn H, Lee M, Chen Y. Investigation and evaluation of randomized controlled trials for interventions involving artificial intelligence. Intelligent Medicine 2021;1(2):61 View
  3. He Y, Zhao Y, Chen Y, Yuan H, Tsui K. Nowcasting influenza‐like illness (ILI) via a deep learning approach using google search data: An empirical study on Taiwan ILI. International Journal of Intelligent Systems 2022;37(3):2648 View
  4. Dixon S, Keshavamurthy R, Farber D, Stevens A, Pazdernik K, Charles L. A Comparison of Infectious Disease Forecasting Methods across Locations, Diseases, and Time. Pathogens 2022;11(2):185 View
  5. Wei Y, Ou Y, Li J, Wu W. Forecasting the Potential Number of Influenza-like Illness Cases by Fusing Internet Public Opinion. Sustainability 2022;14(5):2803 View
  6. Gumaei A, Ismail W, Rafiul Hassan M, Hassan M, Mohamed E, Alelaiwi A, Fortino G. A Decision-Level Fusion Method for COVID-19 Patient Health Prediction. Big Data Research 2022;27:100287 View
  7. Yang S, Bao Y. Comprehensive learning particle swarm optimization enabled modeling framework for multi-step-ahead influenza prediction. Applied Soft Computing 2021;113:107994 View
  8. Bhattamisra S, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing 2023;7(1):10 View
  9. Chong K, Chan P, Lee T, Lau S, Wu P, Lai C, Fung K, Tse C, Leung S, Kwok K, Li C, Jiang X, Wei Y. Determining meteorologically-favorable zones for seasonal influenza activity in Hong Kong. International Journal of Biometeorology 2023;67(4):609 View
  10. Moon J, Jung S, Park S, Hwang E. Machine Learning-Based Two-Stage Data Selection Scheme for Long-Term Influenza Forecasting. Computers, Materials & Continua 2021;68(3):2945 View
  11. Jung S, Moon J, Park S, Hwang E. Self-Attention-Based Deep Learning Network for Regional Influenza Forecasting. IEEE Journal of Biomedical and Health Informatics 2022;26(2):922 View
  12. Moon J, Noh Y, Park S, Hwang E. Model-agnostic meta-learning-based region-adaptive parameter adjustment scheme for influenza forecasting. Journal of King Saud University - Computer and Information Sciences 2023;35(1):175 View
  13. Yang L, Li G, Yang J, Zhang T, Du J, Liu T, Zhang X, Han X, Li W, Ma L, Feng L, Yang W. Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation. Journal of Medical Internet Research 2023;25:e44238 View
  14. Moon J, Jung S, Park S, Hwang E. RESEAT: Recurrent Self-Attention Network for Multi-Regional Influenza Forecasting. IEEE Journal of Biomedical and Health Informatics 2023;27(5):2585 View
  15. Marquez E, Barrón-Palma E, Rodríguez K, Savage J, Sanchez-Sandoval A. Supervised Machine Learning Methods for Seasonal Influenza Diagnosis. Diagnostics 2023;13(21):3352 View
  16. Park S, Moon J, Jung S, Rho S, Hwang E. Explainable influenza forecasting scheme using DCC-based feature selection. Data & Knowledge Engineering 2024;149:102256 View
  17. Ondrikova N, Clough H, Douglas A, Vivancos R, Itturiza-Gomara M, Cunliffe N, Harris J. Comparison of statistical approaches to predicting norovirus laboratory reports before and during COVID-19: insights to inform public health surveillance. Scientific Reports 2023;13(1) View
  18. Hongliang G, Zhiyao Z, Ahmadianfar I, Escorcia-Gutierrez J, Aljehane N, Li C. Multi-step influenza forecasting through singular value decomposition and kernel ridge regression with MARCOS-guided gradient-based optimization. Computers in Biology and Medicine 2024;169:107888 View
  19. Mellor J, Christie R, Overton C, Paton R, Leslie R, Tang M, Deeny S, Ward T. Forecasting influenza hospital admissions within English sub-regions using hierarchical generalised additive models. Communications Medicine 2023;3(1) View
  20. Wang H, Kwok K, Riley S. Forecasting influenza incidence as an ordinal variable using machine learning. Wellcome Open Research 2024;9:11 View
  21. Wang P, Zhang W, Wang H, Shi C, Li Z, Wang D, Luo L, Du Z, Hao Y. Predicting the incidence of infectious diarrhea with symptom surveillance data using a stacking-based ensembled model. BMC Infectious Diseases 2024;24(1) View
  22. Hinson J, Zhao X, Klein E, Badaki‐Makun O, Rothman R, Copenhaver M, Smith A, Fenstermacher K, Toerper M, Pekosz A, Levin S. Multisite development and validation of machine learning models to predict severe outcomes and guide decision‐making for emergency department patients with influenza. JACEP Open 2024;5(2):e13117 View
  23. Vrugt J. Distribution‐Based Model Evaluation and Diagnostics: Elicitability, Propriety, and Scoring Rules for Hydrograph Functionals. Water Resources Research 2024;60(6) View
  24. Botz J, Valderrama D, Guski J, Fröhlich H, Branda F. A dynamic ensemble model for short-term forecasting in pandemic situations. PLOS Global Public Health 2024;4(8):e0003058 View
  25. Soori M, Jough F, Dastres R, Arezoo B. AI-based decision support systems in Industry 4.0, a review. Journal of Economy and Technology 2026;4:206 View
  26. Zhu H, Chen S, Qin W, Aynur J, Chen Y, Wang X, Chen K, Xie Z, Li L, Liu Y, Chen G, Ou J, Zheng K. Study on the impact of meteorological factors on influenza in different periods and prediction based on artificial intelligence RF-Bi-LSTM algorithm: to compare the COVID-19 period with the non-COVID-19 period. BMC Infectious Diseases 2024;24(1) View
  27. Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024;10(18):e37661 View
  28. Furkan H, Ayman N, Uddin M. Hybrid neural network models for time series disease prediction confronted by spatiotemporal dependencies. MethodsX 2024:103093 View
  29. Luo J, Wang X, Fan X, He Y, Du X, Chen Y, Zhao Y. A novel graph neural network based approach for influenza-like illness nowcasting: exploring the interplay of temporal, geographical, and functional spatial features. BMC Public Health 2025;25(1) View
  30. Liu M, Liu Y, Liu J. Machine Learning for Infectious Disease Risk Prediction: A Survey. ACM Computing Surveys 2025;57(8):1 View
  31. Zeng Q, Zhou H, Long J, Jian Y, Feng L, Hu L, Zhu W, Yuan Z, Chen Y, Yi G. Developing Machine Learning Models Based on Clinical Manifestations to Predict Influenza — Chongqing Municipality, China, 2022–2023. China CDC Weekly 2025;7(11):363 View
  32. Kumar P, Chaudhary B, Arya P, Chauhan R, Devi S, Parejiya P, Gupta M. Advanced Artificial Intelligence Technologies Transforming Contemporary Pharmaceutical Research. Bioengineering 2025;12(4):363 View
  33. Seba D, Benaklef N, Belaide K. Time series analysis for modeling and predicting confirmed cases of influenza a in Algeria. Russian Journal of Infection and Immunity 2025;15(1):168 View
  34. Maroufi N, Barnard L, Huang Q, Dobbie G, Aminisani N, Albrecht S, Nghiem N, Baker M. A Framework for Evaluating the Use of Surveillance Systems for Short‐Term Influenza Forecasting. Influenza and Other Respiratory Viruses 2025;19(8) View
  35. Mahajan A, Toshniwal D. Frequency Modulated Transformer Self-Attention for Advanced Infectious Disease Prediction. ACM Transactions on Intelligent Systems and Technology 2025 View
  36. Walaszek M, Kachlik Z, Nazar W, Sokołowska M, Karbiak A, Pilarska E, Waszak P, Cubała W. Machine learning prediction of suicide attempt counts in Poland: Insights from Google trends and historical data. International Journal of Clinical and Health Psychology 2025;25(4):100644 View
  37. Öz M, Üstüner E, Çifci S, Budak F, İleri E, Dikel S. Artificial intelligence for fish disease diagnosis and management: innovations, challenges, and One Health implications. Aquaculture International 2025;33(7) View

Books/Policy Documents

  1. Wei Y, Ou Y, Li J, Wu W. Frontier Computing. View
  2. Luo J, Wang X, Chen M, Zhao Q, Zhao Y. Intelligent Systems and Applications. View
  3. Alajlan S, Lytras M. Transforming Pharmaceutical Research With Artificial Intelligence. View
  4. Butkevych M, Chumachenko D. Integrated Computer Technologies in Mechanical Engineering - 2024. View

Conference Proceedings

  1. Rahman F, Rahman A, Azad Rabby A, Rifat M, Banik M, Islam M, Islam A, Aziz N, Meyer R, Kriak J, Goldblatt S. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). Disease Modeling with a Forest Deep Neural Network Utilizing NLP and a Virtualized Clinical Semantic Network View
  2. Rahman F, Rahman A, Azad Rabby A, Rahman Rifat M, Banik M, Islam M, Islam A, Aziz N, Meyer R, Kriak J, Goldblatt S. 2021 IEEE International Conference on Big Data (Big Data). Modeling Influenza with a Forest Deep Neural Network Utilizing a Virtualized Clinical Semantic Network View