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Abstract

Background: Changeful seasonal influenza activity in subtropical areas such as Taiwan causes problems in epidemic preparedness.
The Taiwan Centers for Disease Control has maintained real-time national influenza surveillance systems since 2004. Except for
timely monitoring, epidemic forecasting using the national influenza surveillance data can provide pivotal information for public
health response.

Objective: We aimed to develop predictive models using machine learning to provide real-time influenza-like illness forecasts.

Methods: Using surveillance data of influenza-like illness visits from emergency departments (from the Real-Time Outbreak
and Disease Surveillance System), outpatient departments (from the National Health Insurance database), and the records of
patients with severe influenza with complications (from the National Notifiable Disease Surveillance System), we developed 4
machine learning models (autoregressive integrated moving average, random forest, support vector regression, and extreme
gradient boosting) to produce weekly influenza-like illness predictions for a given week and 3 subsequent weeks. We established
a framework of the machine learning models and used an ensemble approach called stacking to integrate these predictions. We
trained the models using historical data from 2008-2014. We evaluated their predictive ability during 2015-2017 for each of the
4-week time periods using Pearson correlation, mean absolute percentage error (MAPE), and hit rate of trend prediction. A
dashboard website was built to visualize the forecasts, and the results of real-world implementation of this forecasting framework
in 2018 were evaluated using the same metrics.

Results: All models could accurately predict the timing and magnitudes of the seasonal peaks in the then-current week (nowcast)
(ρ=0.802-0.965; MAPE: 5.2%-9.2%; hit rate: 0.577-0.756), 1-week (ρ=0.803-0.918; MAPE: 8.3%-11.8%; hit rate: 0.643-0.747),
2-week (ρ=0.783-0.867; MAPE: 10.1%-15.3%; hit rate: 0.669-0.734), and 3-week forecasts (ρ=0.676-0.801; MAPE: 12.0%-18.9%;
hit rate: 0.643-0.786), especially the ensemble model. In real-world implementation in 2018, the forecasting performance was
still accurate in nowcasts (ρ=0.875-0.969; MAPE: 5.3%-8.0%; hit rate: 0.582-0.782) and remained satisfactory in 3-week forecasts
(ρ=0.721-0.908; MAPE: 7.6%-13.5%; hit rate: 0.596-0.904).

Conclusions: This machine learning and ensemble approach can make accurate, real-time influenza-like illness forecasts for a
4-week period, and thus, facilitate decision making.
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Introduction

Seasonal influenza is one of the most prevalent infectious
diseases in Taiwan, accounting for millions of cases, over tens
of thousands of patient hospitalizations, and hundreds of deaths
annually [1-4]. In Taiwan, the seasonal influenza epidemic
typically begins in winter and continues to the end of the year
until the spring of the next year [2]. However, the changeful
influenza activity in subtropical areas like Taiwan sometimes
causes problems in epidemic preparedness. For instance, in
Taiwan, the 2015-2016 influenza epidemic, with H1N1 as the
main circulating strain, was the biggest since the 2009 novel
H1N1 outbreak. Nevertheless, H1N1 influenza activity was
unexpectedly low in the following 2016-2017 influenza season,
whereas H3N2 influenza activity peaked unpredictably in the
summer season in 2017 and caused a severe epidemic [2,3].

Since 2004, to monitor changes in influenza activity, the Taiwan
Centers for Disease Control (Taiwan CDC) has established
real-time national influenza surveillance systems for
influenza-like illness visits to hospitals and clinics [5,6]. The
surveillance systems have minimal time lag in data collection;
therefore, public-health professionals can immediately adjust
their response almost in real time. The decision-making process,
however, remains based only on past data (despite the short
time lag). Influenza epidemic forecasting for upcoming weeks
or months can provide more information for policymaking and
is relevant for preparedness [7]. The ability to provide a
short-term forecast in terms of epidemic magnitude is
particularly vital for emergency departments during a long
weekend or the Lunar New Year in Taiwan (eg, the Lunar New
Year comprised 9 vacation days in 2019), during which time,
influenza-like illness visits at emergency departments
considerably increase (since outpatient services are closed), and
sometimes patients crowd the emergency departments. In this
situation, reliable forecasts are required to determine the surging
capacity.

Many research teams have worked on influenza forecasting for
a long time. Among the models used by researchers, the
autoregressive integrated moving average (ARIMA) model is
a methodology that is often chosen for seasonal influenza
forecasts because of its advantage in dealing with time-series
data [8,9], its satisfactory performance using data that are time
dependent for short-term projection, and its widespread use in
other health-related forecasting tasks [9-14]. Decision tree–based
machine learning algorithms such as random forest and extreme
gradient boosting also have their strengths in predictive analysis
and forecasting, which has been shown in data science
competitions such as Kaggle [15], influenza outbreaks [14], and
foodborne disease trends [16]. A study in Canada [17] showed
random forest models had better performance predicting
influenza A virus frequency than that of ARIMA and generalized
linear autoregressive integrated moving average models. Unlike
ARIMA, random forest and extreme gradient boosting, as

ensemble weak prediction models, have better performance
dealing with high-dimension data [18], while support vector
regression’s strength is finding an optimal hyperplane with a
nonlinear boundary [19,20]. Previous research has also
demonstrated a successful combination of linear regression with
nonlinear predictor, random forest, support vector regression,
and extreme gradient boosting to predict dengue fever outbreak
in the United States [21].

Instead of traditional surveillance data, researchers have also
attempted using nontraditional data sources, such as Google
Flu Trends and Flu Near You, to improve their forecasts since
2008 [22,23]. These data served as surrogate indicators or
supplement data for influenza-like illness activity. Lasso
regression, random forest, extreme gradient boosting, and
support vector regression have been widely implemented to
aggregate these data from Google search, Google trend,
Wikipedia, and social media (such as Twitter and Baidu) in
influenza forecasting [24-27]. The performance of elastic net
and support vector regression was considered to be comparable
in a study [26] which used the Baidu index as a predictor and
predicted the number of influenza cases in China by support
vector regression, and in a study [28] in France which used
electronic health record data with historical epidemiology
information for influenza-like illness incidence rate predictions.

On the other hand, researchers began to explore the possibility
of simultaneously using multiple models or data sources to find
an ensemble approach to produce more robust forecasts by
combining the results of different forecasting models [11,29-32].
For seasonal influenza forecasting in the US, the empirical
Bayes method has been used to integrate the forecasts from
linear models using multiple data sources as predictors [29].
Kandula et al [32] also evaluated the performance of the
susceptible-exposed-infectious-recovered-susceptible model,
Bayesian weighted outbreaks, k-nearest neighbor, and a
superensemble method when combining distinct forecast
methods to predict influenza outbreaks in the United States. A
meta-ensemble of statistical and mechanistic methods has shown
better accuracy than individual methods [31,32].

Compared to internet data, which might easily be influenced
by search engine marketing, the surveillance database in Taiwan
can provide much more comprehensive data with a small time
lag. These data sources are also easier to be maintained and
reliable for a long-term decision-making system. Therefore,
using the surveillance data, we aimed to develop a practical
framework consisting of an ensemble model with machine
learning models to combine the advantages of different
forecasting models for real-time influenza-like illness
predictions, and facilitate influenza preparedness.
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Methods

Data Source
The data we used to train and validate the machine learning
algorithm included weekly data from the Real-Time Outbreak
and Disease Surveillance System, the National Health Insurance
Database, and the National Notifiable Disease Surveillance
System [5,6]. The details and characteristics of the data sets are
described in Multimedia Appendix 1. Other data used include
the number of national holidays in each week, regular weekends,
and long weekends. We used surveillance data from 2008-2017
to establish the framework of the forecasting models.

Forecasting Targets and the Renewal of the
Surveillance Data and Models
The forecasting targets in our study were short-term
forecasts—weekly number of influenza-like illness visits for

the 4-week period after the most recent surveillance data.
Real-Time Outbreak and Disease Surveillance System, National
Health Insurance, and National Notifiable Disease Surveillance
System databases were updated daily. Because of the potential
delay in data entry by hospitals, all the models were
automatically retrained and updated every Tuesday night using
data up until the end of the previous week. The updated models
would then produce the predictions of influenza-like illness
visits for 4 weeks from that time point (the end of the previous
week). Therefore, the initial forecast actually predicts the
number of influenza-like illness visits in the then-current week
(nowcast), whereas the 1-week, 2-week, and 3-week forecasts
represent the weekly predictions for each of the subsequent 3
weeks (Figure 1).

Figure 1. Timeline of historical data used for model training and forecasting periods.

Machine Learning Algorithms
Four machine learning algorithms—ARIMA, random forest,
support vector regression, and extreme gradient boosting—were
used to produce weekly influenza-like illness predictions for a
4-week period. We chose these algorithms, each with different
characteristics and strengths, so that the forecasting task could
benefit from the diversity of the machine learning algorithms.

To summarize the forecasts of the 4 different machine learning
algorithms, we adopted the ensemble method called stacking
[31,33] An ensemble model was trained using another support
vector regression algorithm with a linear kernel that optimized
the best regression between the observed number of
influenza-like illness visits and the 4-week forecasts. A previous
study [32] adopted a Bayesian model, which requires the prior
distribution estimation to produce the ensemble forecast. We
chose a support vector regression with a linear kernel model
because it can produce a weighted-average forecast from 4
individual models without considering data distribution. By
using the stacking method, the forecasts of different algorithms
are automatically weighted and combined to produce the
ensemble forecasts. The linear kernel was chosen because of
the forecasting and efficient computing performance it showed
in the training process. The hyperparameter tuning mechanism,

described in the section that follows, was used to evaluate the
performance of the ensemble model from the first week of 2015
to the 40th week of 2017.

Feature Selection, Engineering, and Model Tuning
The initial features were selected after discussions with experts
of Taiwan CDC. The number of past influenza-like illness visits
in the 8 previous weeks (from the Real-Time Outbreak and
Disease Surveillance System and National Health Insurance
database) and the length of national holidays in a week were
the basic features. We also included essential holidays, such as
the Lunar New Year, in the feature set because it was believed
to have a significant influence on influenza-like illness visits,
especially in emergency departments. Our feature engineering
work included moving average, moving difference with varying
time lags, and the proportion of influenza-like illness visits to
total medical visits (Multimedia Appendix 2).

We chose naïve (heuristic) mechanisms, instead of the
conventional methods, for feature selection. We used
surveillance data from 2008-2017 for feature selection and
model tuning. We evaluated the overall forecasting performance
of the algorithms during the first week of 2015 to the 40th week
of 2017 by comparing the forecasts to observed historical data
in the same period. Using this framework, we dynamically
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retrained each model from zero every week to incorporate newly collected data (Figure 2):

Figure 2. The framework of feature selection and model tuning for our model training and validation compared to the conventional method.

1. For an individual week T from the first week of 2015, the
training data set included the weekly influenza-like illness data
from week 1 in 2008 to week T. 

2. Given a set of features and fixed hyperparameter value, the
model f (·|T, h), forecasting the h weeks ahead, was trained using
the training data set at week T .

3. The number of influenza-like illness visits in week T + h was
forecasted by the trained f (·|T, h).

4. The forecasted number was compared to the observed number
of influenza-like illness visits in week T + h using the evaluation
metrics.

5. For each week from the first week of 2015 to the 40th week
of 2017, we repeated Step 1 to Step 4 and calculated the
evaluation metrics for specific feature sets and hyperparameters.
Then we selected the feature set and hyperparameters that
performed best in evaluation metrics.

If we only used k-fold cross-validation during model training,
look-ahead bias might have occurred when using time-series
data with potential autocorrelation. The advantage of this
framework avoided look-ahead bias and made use of all
historical data before the week T to train the models in

forecasting the weekly influenza-like illness visits of the week
T + h at the week T. 

Evaluation Metrics
The metrics we used to evaluate the model performance included
Pearson correlation (ρ), root mean squared error (RMSE), mean
absolute percentage error (MAPE), and hit rate (Multimedia
Appendix 3). Lower MAPE, lower RMSE, higher hit rate, and
higher correlation indicated better forecasting performance.

Software and Visualization
We used data munging and feature engineering (dplyr), the
time-series model, ARIMA (forecast) , random forest model
(randomForest), support vector regression (e1071), and extreme
gradient boosting model (xgboost) packages in R (version 3.4.4)
on Ubuntu (version 14.0.4). The functions and hyperparameters
that were used are listed in Multimedia Appendix 4. A
visualization dashboard website was designed to display and
compare the predictions of the 5 models (using D3.js and several
JavaScript frameworks) [34].
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Results

Real-Time Estimates (Nowcast)
The visualized comparison of the estimated epidemic curve in
nowcasts and the observed number of influenza-like illness
visits showed that all the models, especially the ensemble model,
could predict the time and magnitude of the peaks of the
influenza epidemic throughout the influenza season from
2015-2017, such as the peaks of the Lunar New Year vacation

for each year and the peak of the summer flu in 2017 (Figure
3). All models could appropriately fit the epidemic curve of the
outpatient (ρ=0.891-0.962) and emergency (ρ=0.802-0.967)
departments (Table 1).

For 2015-2017, the nowcast prediction by the 4 machine
learning models exhibited good accuracy (MAPE as low as
5.2%); however, the ensemble model (outpatient: ρ=0.956,
MAPE 6.0%, hit rate 0.756; emergency: ρ= 0.967, MAPE 5.2%,
hit rate 0.705) outperformed individual models.

Figure 3. Nowcasts (current week predictions) of the influenza-like illness visits in outpatient and emergency departments by the 5 machine learning
models (colored lines) compared with the observed historical data (black line), 2015-2017. ARIMA: autoregressive integrated moving average; ILI:
influenza-like illness; RF: random forest; SVR: support vector regression; XGB: extreme gradient boosting.
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Table 1. The evaluation metrics of the 5 machine learning models for then-current week forecasts (nowcast), 1-week forecasts, 2-week forecasts, and
3-week forecasts for 2015 to 2017 data.

Emergency influenza-like illness visitsOutpatient influenza-like illness visitsTime period

Pearson correla-
tion coefficient

Hit rateMAPE, %RMSEPearson correla-
tion coefficient

Hit rateMAPEb, %RMSEaModel

Nowcast (current week)

0.965 0.718 5.21689.80.962 0.7446.56621.9ARIMAc

0.922 0.609 7.62707.80.891 0.5779.210773.1RFd

0.802 0.686 7.14189.80.923 0.6867.79265.0SVRe

0.935 0.667 6.62696.00.915 0.6357.310063.6XGBf

0.967 0.705 5.21696.30.956 0.7566.06903.5Ensemble

1-week

0.918 0.747 8.32562.10.892 0.69511.511165.2ARIMA

0.842 0.643 11.83430.00.855 0.70111.712256.6RF

0.803 0.701 9.44351.80.874 0.74010.711573.6SVR

0.842 0.688 9.73866.70.836 0.69511.013604.7XGB

0.901 0.708 8.32831.60.874 0.72110.111752.8Ensemble

2-week

0.867 0.727 10.13206.20.792 0.69515.315471.8ARIMA

0.816 0.669 13.73639.80.823 0.72113.813464.5RF

0.783 0.734 10.84562.10.808 0.70813.713972.9SVR

0.817 0.708 11.34235.00.785 0.72713.615317.7XGB

0.8600.727 10.43467.90.823 0.72712.013758.1Ensemble

3-week

0.801 0.68812.03836.80.6760.66918.919338.3ARIMA

0.777 0.70815.03949.80.7960.75314.914310.9RF

0.731 0.67512.14903.40.7430.78615.916004.3SVR

0.6860.73413.54823.20.7230.70815.716888.8XGB

0.7970.64313.13937.20.7800.77313.315193.6Ensemble

aRMSE: root mean squared error.
bMAPE: mean absolute percentage error.
cARIMA: autoregressive integrated moving average.
dRF: random forest.
eSVR: support vector regression.
fXGB: extreme gradient boosting.

Forecasts for the Following 3 Weeks
The forecasts for the following 3 weeks using our ensemble
model exhibited satisfactory performance for predicting the
epidemic trend and successfully captured the epidemic peaks.
Still, there were some time lags in peak prediction in the 1-, 2-,
and 3-week forecasts (Figure 4). The accuracy slightly decreased

with an increase in the forecast time horizons as well (MAPE:
8.3%-18.9%; hit rate: 0.643-0.786 in the 1-week, 2-week, and
3-week forecasts) (Table 1). Although the ARIMA model had
the highest accuracy and hit rate in nowcasts, the random forest
and support vector regression models performed better in the
forecasts of the subsequent 2 and 3 weeks, particularly in terms
of outpatient influenza-like illness visits.
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Figure 4. Forecasts using the ensemble model (red) and the observed (black) number for influenza-like illness visits in (A) outpatient and (B) emergency
departments, 2015-2017.

Real-World Application in 2018
We started using the framework with the 5 models in Taiwan
CDC in early 2018. Since 2018, the nowcasts of our models
has exhibited good accuracy (outpatient MAPE: 5.3%-5.8%;
emergency MAPE: 5.7%-8.0%). Moreover, the 3-week forecasts
maintained comparable accuracy to one another (outpatient
MAPE: 8.8%-13.5%; emergency MAPE: 8.8%-13.5%; Table
2 and Multimedia Appendix 5). Hit rates of the nowcasts were

0.600-0.727 in outpatient and 0.582-0.782 in emergency
department and remained at a high level in the 3-week forecasts
(0.787-0.908 and 0.596-0.788 in outpatient and emergency
department, respectively). All the models could approximately
detect the declining trend when the magnitude of the epidemic
had already reached a peak (Figure 5). The random forest and
extreme gradient boosting model better identified the increasing
trend during the early stage of the epidemic. 
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Table 2. Evaluation metrics of the 5 machine learning models for the current week forecasts (nowcast), 1-week forecasts, 2-week forecasts, and 3-week
forecasts in 2018.

Emergency influenza-like illness visitsOutpatient influenza-like illness visits

Pearson correla-
tion coefficient

Hit rateMAPE, %RMSEPearson correla-
tion coefficient

Hit rateMAPEb, %RMSEaModel

Nowcast (current week)

0.9650.7825.71125.30.9580.7275.56422.8ARIMAc

0.9520.7096.21305.80.9570.7095.46472.1RFd

0.8750.5828.02079.60.9690.6555.85343.2SVRe

0.9230.6736.21643.60.9430.6915.87384.6XGBf

0.9120.7276.51751.00.9620.6005.36170.7Ensemble

1-week

0.9190.7047.81707.60.8970.7419.09874.7ARIMA

0.8990.7597.91861.20.9210.8337.28644.1RF

0.7980.75910.62643.70.9420.7787.97330.1SVR

0.8360.6858.32353.30.9030.7419.09738.7XGB

0.8320.7228.42363.00.9110.7967.59156.8Ensemble

2-week

0.8930.7558.61922.20.8510.81111.811630.6ARIMA

0.8880.7367.71975.50.8930.8119.410082.3RF

0.7300.56612.83031.00.9050.83010.19292.7SVR

0.8430.6987.92371.60.8730.75511.311262.8XGB

0.8350.7558.62389.40.8890.7748.610078.8Ensemble

3-week

0.8980.7889.51875.40.7870.86513.513656.7ARIMA

0.8770.6928.82041.90.8920.76910.110258.0RF

0.7210.59613.53106.00.9040.88510.99439.7SVR

0.8900.6927.62259.60.8300.78813.012789.3XGB

0.8140.7699.62478.40.9080.9048.89160.9Ensemble

aRMSE: root mean squared error.
bMAPE: mean absolute percentage error.
cARIMA: autoregressive integrated moving average.
dRF: random forest.
eSVR: support vector regression.
fXGB: extreme gradient boosting.
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Figure 5. Forecasts of the 5 machine learning models (red) and the observed number (black) of influenza-like illness visits in (A) outpatient and (B)
emergency departments, 2018. ARIMA: autoregressive integrated moving average; MAPE: mean absolute percentage error; RF: random forest; RMSE:
root mean squared error; SVR: support vector regression; XGB: extreme gradient boosting.

Visualization Dashboard of Forecasts
To easily compare the predictions of the 5 models, we created
a visualization dashboard website to display the projections
concurrently (Multimedia Appendix 6). We also provided the
MAPEs and hit rates of all the models that were calculated using
the recent 4-, 8-, and 52-week data. In this manner, policy

makers could also consider accuracy when evaluating
predictions.
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Discussion

Principal Results
By using the influenza surveillance data from Taiwan CDC, we
established a forecasting model framework that comprises 4
machine learning models and one ensemble model. Our
ensemble approach and the framework of model training could
provide highly precise forecasts of weekly influenza-like illness
visits for a 4-week period. Then-current week forecasts
(nowcasts) were the most accurate with MAPE as low as
approximately 5% and hit rates of approximately 0.75. Because
of the satisfactory hit rate, the change in the influenza-like illness
visits in the forecasts for the 4-week period could be regarded
as the estimated temporal trend forecasts of a future epidemic
as well.

A comparison with models developed in other countries or areas
revealed that our models could provide better accuracy with a
very low MAPE, which was less than 10% in nowcasts and
remained below 20% in the 4-week period forecasts. These
results outperform previously-reported models with MAPE
mostly greater than 15%-20% [11,25,35,36], suggesting that
our models can provide promising predictivity of short-term
forecasts on the epidemic magnitude; however, it is difficult to
directly compare the performance among different algorithms
developed in varying clinical settings and with varying data
quality. As for short-term forecasting of the epidemic magnitude
in Taiwan, an MAPE less than 10%, especially during the peak
time, would be helpful when policymakers need to evaluate the
required surging capacity. Because the weekly change of
influenza-like illness visits is usually less than 10%-15% in
Taiwan, an MAPE greater than 15%-20% might not reliably
catch the shift in the epidemic.

The high accuracy of our models might be attributed to the
comprehensive data set that we used [5]. The high coverage and
good representativeness of the Real-Time Outbreak and Disease
Surveillance System and National Health Insurance database
allowed the forecasts to more accurately reflect the trends and
magnitude of influenza-like illness without being affected by
the bias that would have been caused by incompletely sampled
data. Conversely, previous models in the US and other countries
mostly relied on the sentinel surveillance system such as the
influenza-like illness net in the US, which was mainly composed
of volunteered sentinel clinics and had problems pertaining to
completeness and representativeness [37-40]; the predictivity
of the models might have been significantly impaired when they
were trained using imprecise historical data. Researchers usually
develop an algorithm using a specific period of historical data
and then use the trained algorithm with newly-collected data to
forecast; therefore, forecasting performance can become worse
and worse over time and require periodic adjustment.

In contrast, with our method, models can be retrained every
week using updated data. In this way, the algorithms learn from
the updated data and maintain satisfactory performance even
after being used by the Taiwan CDC for more than one year.
In addition, our ensemble model was adapted from the stacking
method and could summarize the forecasting outputs from the
4 basic machine learning algorithms with appropriate weighting

[31-33]. The aim of our ensemble model was not to build the
most accurate forecasting model for any given time. Since the
4 models select features independently from our data sources
and had different forecasting performance in real-world
applications, for example, ARIMA was usually a lagging
indicator of the peak in the influenza season, while random
forest and extreme gradient boosting predicted the peak better
but tended to underestimate the magnitudes at the peak;
therefore, by combining the forecasts from ARIMA and extreme
gradient boosting model, the ensemble approach could overcome
the disadvantages of each individual model and generate the
most robust forecasts with stable performance.

In addition to completeness and representativeness, the
Real-Time Outbreak and Disease Surveillance System and
National Health Insurance database provided excellent
timeliness for our forecasting models. Thanks to the nearly
real-time data exchange of the Real-Time Outbreak and Disease
Surveillance System and National Health Insurance database
with a time lag of, at the most, 1-2 days [5], we could use
influenza-like illness data from the previous week at the
beginning the week and generate forecasts for a 4-week period
that started every Tuesday, for any given week. Because of the
delay in the collection of surveillance data, models developed
in other countries usually acquire data with at least 1-2 weeks
of delay. Thus, their 1-week forecast generated using historical
data up until 2 weeks prior is actually the prediction for the
previous week [11,25,40-42]. Compared to those models [43],
the aforementioned short time delay made our forecast model,
which can generate the forecast of a given week (nowcast), a
real real-time forecasting model. This information can be of
great help to the authorities for decision making concerning
epidemic preparedness and interventions.

In order to resolve the timeliness problem of the influenza-like
illness surveillance data, researchers have attempted to explore
the use of social media data (such as Twitter and Facebook) or
internet search data (such as Google search and Google Flu
Trends) to develop forecasting models because these data can
be collected in almost real-time [11,22,26,36,41,44]. However,
the method of data collection, quality of social media data, and
accuracy of the models still posed problems [22,26,36,41]. In
our framework, we did not include social media data because
of the following reasons. First, ideal sources of social media
information have not yet been established in Taiwan. The largest
social media website in Taiwan is Facebook. Still, it is rarely
used in social media surveillance because of the hindrances in
collecting personal posts from individual profiles (personal
walls). A microblog such as Twitter is less prevalent in Taiwan
netizens. Second, as for web search data, the Taiwan CDC
conducts a regular weekly press release and usually causes a
higher amount of search for the related terms on the day of the
press release. For example, the searches for influenza
significantly increase when an influenza-related news article is
released. Therefore, it is difficult to determine whether the
increase in the number of web searches, epidemic-related news,
or social media discussions is due to an increase influenza-like
illness visits or the effect on the media of the official press
release. Conversely, access to medical service in Taiwan is easy,
and our surveillance systems, such as the Real-Time Outbreak
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and Disease Surveillance System and the National Health
Insurance database, have already collected highly comprehensive
data. Thus, we do not need to rely upon the use of social media
as a supplementary data source for disease forecasting,
especially for influenza-like illness.

For the models based on traditional frequency statistics such as
ARIMA, it is relatively easy to produce a 95% confidence
interval, but it is not similarly easy for random forest, support
vector regression, and extreme gradient boosting models.
Although some literature discussed how to generate prediction
intervals for machine learning models like random forest, it is
not practical to display 5 intervals on one chart simultaneously.
Too much information only confuses the user and makes it
difficult to interpret the trend from the 5 forecasts. As we
introduced 4 forecasting models based on different algorithms,
they already provide and demonstrate the variations in forecasts.
When we combine these forecasts with the most robust forecasts
from the ensemble model, decision makers can easily get an
impression of the forecast without ignoring the potential outlier
at one time. Thus, this framework can provide similar
information to that provided by confidence intervals.

The models used were machine learning models, which were
different from traditional mechanistic models and those such
as the susceptible-infectious-recovered model [45,46]. The
susceptible-infectious-recovered model considers the dynamics
of infectious disease and other biological components. For
example, a researcher could create a compartment to simulate
the interaction dynamics between infected and immunized
people to estimate the effects of vaccination. However, these
models are usually built on the basis of historical data and are
useful in evaluating the relationship between the different
compartments. This characteristic makes such a model better
for assessing the effectiveness of vaccination or other
interventions on disease transmission, but poor in making future
prediction since it is difficult to extrapolate the results because
of unknown data at forecasting [43]. For example, when building
a susceptible-infectious-recovered-V model, including the

compartment V as vaccinated, we need to enter the possible
number of vaccinated people in the near future if we want to
use this model for forecasting.

Limitations
There are some limitations to our forecasting models. First, the
predictivity of our models decreased with longer time horizons,
and the best hit rate was only approximately 0.75, suggesting
that our models are better at predicting the epidemic magnitude
but not the trend. However, we could calibrate the forecasts by
learning from the experience of the real-world application. For
example, compared with traditional time-series models, such
as the ARIMA model, we found that the random forest and
support vector regression models may better predict the
epidemic dynamics, when the models were applied in 2018. By
combining the forecasts and human judgment, the
decision-making process for future epidemics can be further
ameliorated. Second, using other new deep learning algorithms,
especially those with promising performance in time-series
forecasting tasks, such as a recurrent neural network and long
short-term memory networks, may help to improve the
forecasting accuracy. Unlike sequential learning, we retrained
the models from zero with mostly updated data every week to
manage the time factor better. Our model is only designed for
short-term forecasts not for the long-term epidemic change. A
deep learning algorithm may be able to deal with this type of
forecasting task. Further studies using other algorithms on
different forecasting targets, such as the start of a seasonal
influenza outbreak and its peak time, are still required to be able
to provide more information.

Conclusions
Our project demonstrated real-time short-term forecasting
models on weekly influenza-like illness visits using
comprehensive influenza surveillance data. By using an
ensemble approach to aggregate the forecasts of 4 machine
learning models, we could provide accurate predictions for a
4-week period (nowcast and forecasts for the subsequent 3
weeks) to enhance epidemic preparedness.
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