Journal of Medical Internet Research
The leading peer-reviewed journal for digital medicine and health and health care in the internet age.
Editor-in-Chief:
Gunther Eysenbach, MD, MPH, FACMI, Founding Editor and Publisher; Adjunct Professor, School of Health Information Science, University of Victoria, Canada
Impact Factor 5.8 CiteScore 14.4
Recent Articles
Cardiac rehabilitation is known to reduce coronary artery disease (CAD) severity and symptoms, but adoption of a healthy postrehabilitation lifestyle remains challenging. Innovative eHealth solutions could help, but behavioral change–based eHealth maintenance programs for patients with CAD are scarce. RehaPlus+ aims to improve postrehabilitation outcomes with a personalized eHealth intervention built on behavioral change concepts emphasizing healthy lifestyle changes, especially regular physical activity (PA).
While the evidence base on web-based cancer misinformation continues to develop, relatively little is known about the extent of such information on the world’s largest e-commerce website, Amazon. Multiple media reports indicate that Amazon may host on its platform questionable cancer-related products for sale, such as books on purported cancer cures. This context suggests an urgent need to evaluate Amazon.com for cancer misinformation.
Pulse oximetry is a noninvasive method widely used in critical care and various clinical settings to monitor blood oxygen saturation. During the COVID-19 pandemic, its application for at-home oxygen saturation monitoring became prevalent. Further investigations found that pulse oximetry devices show decreased accuracy when used on individuals with darker skin tones. This study aimed to investigate the influence of X (previously known as Twitter) on the dissemination of information and the extent to which it raised health care sector awareness regarding racial disparities in pulse oximetry.
With the widespread implementation of electronic health records (EHRs), there has been significant progress in developing learning health systems (LHSs) aimed at improving health and health care delivery through rapid and continuous knowledge generation and translation. To support LHSs in achieving these goals, implementation science (IS) and its frameworks are increasingly being leveraged to ensure that LHSs are feasible, rapid, iterative, reliable, reproducible, equitable, and sustainable. However, 6 key challenges limit the application of IS to EHR-driven LHSs: barriers to team science, limited IS experience, data and technology limitations, time and resource constraints, the appropriateness of certain IS approaches, and equity considerations. Using 3 case studies from diverse health settings and 1 IS framework, we illustrate these challenges faced by LHSs and offer solutions to overcome the bottlenecks in applying IS and utilizing EHRs, which often stymie LHS progress. We discuss the lessons learned and provide recommendations for future research and practice, including the need for more guidance on the practical application of IS methods and a renewed emphasis on generating and accessing inclusive data.
Health care students often endure numerous stressors throughout their undergraduate education that can have lasting negative effects on their mental well-being. Positive Intelligence (PQ) is a digital mental fitness program designed to enhance self-mastery and help individuals reach their potential by strengthening various “mental muscles.”
Atrial fibrillation (AF) is a leading chronic cardiac disease associated with an increased risk of stroke, cardiac complications, and general mortality. Mobile health (mHealth) interventions, including wearable devices and apps, can aid in the detection, screening, and management of AF to improve patient outcomes. The inclusion of approaches that consider user experiences and behavior in the design of health care interventions can increase the usability of mHealth interventions, and hence, hopefully, yield an increase in positive outcomes in the lives of users.
Hospital pharmacy plays an important role in ensuring medical care quality and safety, especially in the area of drug information retrieval, therapy guidance, and drug-drug interaction management. ChatGPT is a powerful artificial intelligence language model that can generate natural-language texts. Here, we explored the applications and reflections of ChatGPT in hospital pharmacy, where it may enhance the quality and efficiency of pharmaceutical care. We also explored ChatGPT’s prospects in hospital pharmacy and discussed its working principle, diverse applications, and practical cases in daily operations and scientific research. Meanwhile, the challenges and limitations of ChatGPT, such as data privacy, ethical issues, bias and discrimination, and human oversight, are discussed. ChatGPT is a promising tool for hospital pharmacy, but it requires careful evaluation and validation before it can be integrated into clinical practice. Some suggestions for future research and development of ChatGPT in hospital pharmacy are provided.
Medical texts present significant domain-specific challenges, and manually curating these texts is a time-consuming and labor-intensive process. To address this, natural language processing (NLP) algorithms have been developed to automate text processing. In the biomedical field, various toolkits for text processing exist, which have greatly improved the efficiency of handling unstructured text. However, these existing toolkits tend to emphasize different perspectives, and none of them offer generation capabilities, leaving a significant gap in the current offerings.
Preprints Open for Peer-Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-