Published on in Vol 25 (2023)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/44818, first published
.

Journals
- Smith C, Vendrame M. Perspective: A resident’s role in promoting safe machine-learning tools in sleep medicine. Journal of Clinical Sleep Medicine 2023;19(11):1985 View
- Kim M, Choi M. STOP-Bang and Smartwatch’s Two-Step Approach for Obstructive Sleep Apnea Screening. Korean Journal of Otorhinolaryngology-Head and Neck Surgery 2023;66(7):455 View
- Yoon H, Choi S. Technologies for sleep monitoring at home: wearables and nearables. Biomedical Engineering Letters 2023;13(3):313 View
- Han S, Kim D, Rhee C, Cho S, Le V, Cho E, Kim H, Yoon I, Jang H, Hong J, Lee D, Kim J. In-Home Smartphone-Based Prediction of Obstructive Sleep Apnea in Conjunction With Level 2 Home Polysomnography. JAMA Otolaryngology–Head & Neck Surgery 2024;150(1):22 View
- Singtothong C, Siriborvornratanakul T. Deep-learning based sleep apnea detection using sleep sound, SpO2, and pulse rate. International Journal of Information Technology 2024;16(8):4869 View
- Lillini D, Aironi C, Migliorelli L, Gabrielli L, Squartini S. SiCRNN: A Siamese Approach for Sleep Apnea Identification via Tracheal Microphone Signals. Sensors 2024;24(23):7782 View
- Song Y, Ding L, Peng J, Song L, Zhang X. Screening for obstructive sleep apnea hypopnea using sleep breathing sounds based on the PSG-audio dataset. Biomedical Signal Processing and Control 2025;103:107472 View
- Giorgi L, Nardelli D, Moffa A, Iafrati F, Di Giovanni S, Olszewska E, Baptista P, Sabatino L, Casale M. Advancements in Obstructive Sleep Apnea Diagnosis and Screening Through Artificial Intelligence: A Systematic Review. Healthcare 2025;13(2):181 View
- Pinilla L, Chai‐Coetzer C, Eckert D. Diagnostic Modalities in Sleep Disordered Breathing: Current and Emerging Technology and Its Potential to Transform Diagnostics. Respirology 2025;30(4):286 View
- Zhang Z, Wu W, Fu Z, Han Z, Zhang J, Sun C, Ma D, Wang C. Real-Time Sleep Apnea Detection and Prediction From Single-Channel Airflow. IEEE Transactions on Instrumentation and Measurement 2025;74:1 View
- Hayano J, Takeshima M, Imanishi A, Ogasawara M, Yamada Y, Yuda E, Mishima K. Detection of sleep apnea using smartphone-embedded inertial measurement unit. Scientific Reports 2025;15(1) View
- Shokouhmand S, Bhatt S, Faezipour M. Artificial Intelligence in Respiratory Health: A Review of AI-Driven Analysis of Oral and Nasal Breathing Sounds for Pulmonary Assessment. Electronics 2025;14(10):1994 View
- Tan B, Gao E, Tan N, Yeo B, Tan C, Ng A, Leong Z, Phua C, Uataya M, Goh L, Ong T, Leow L, Huang G, Toh S. Machine Listening for OSA Diagnosis. CHEST 2025;168(2):520 View
- Frija J, Millet J, Béquignon E, Covali A, Cathelain G, Houenou J, Benzaquen H, Geoffroy P, Bacry E, Grajoszex M, d’Ortho M. Proposition of a new, minimally-invasive, software smartphone device to predict sleep apnea and its severity. Sleep and Breathing 2025;29(5) View
- Kim Y, Kim M, Shin J, Ko M. ApneaWhisper: Transformer-Based Audio Segmentation for Fine-Grained Non-Invasive Sleep Apnea Detection. Nature and Science of Sleep 2025;Volume 17:2455 View
- Park T, Yoon S, Yoon H, Lee K. Sleep Apnea Detection Using Respiratory Sound Data Based on Deep Learning Models. Journal of information and communication convergence engineering 2025;23(3):215 View
- Choi S, Shin J, Kim Y, Shin J, Ko M. Estimating Sleep-Stage Distribution from Respiratory Sounds via Deep Audio Segmentation. Sensors 2025;25(20):6282 View
- Wang P, Lin Y, Liu W, Ma E, Majumdar A, Kang J, Gudnason J, Kuan Y, Lee K, Feng P, Chen K, Wu C, Lee H, Chen Y, Chen Y, Chien R, Chang Y, Tsai C. Deep representation learning with cross attention-based multi-feature fusion for sleep apnea detection using sleep respiratory sound. Biomedical Signal Processing and Control 2026;113:109093 View
- Jahrami H, Husain W, Trabelsi K, Penzel T, Hirshkowitz M, Razjouyan J, BaHammam A, Sharafkhaneh A. Artificial intelligence and sleep medicine II: A scoping review of applications, advancements, and future directions. Sleep Medicine Reviews 2026;85:102212 View
Conference Proceedings
- Tendeas T, Chrisstianto C, Alianto V, Puji M, Permai S, Ningsih R. 2025 9th International Conference on Instrumentation, Control, and Automation (ICA). Embedded System for Early Sleep Apnea Detection Based on Mel-Frequency Cepstral Coefficient (MFCC) and Deep Learning Technique View
