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Abstract

Background: Multinight monitoring can be helpful for the diagnosis and management of obstructive sleep apnea (OSA). For
this purpose, it is necessary to be able to detect OSA in real time in a noisy home environment. Sound-based OSA assessment
holds great potential since it can be integrated with smartphones to provide full noncontact monitoring of OSA at home.

Objective: The purpose of this study is to develop a predictive model that can detect OSA in real time, even in a home environment
where various noises exist.

Methods: This study included 1018 polysomnography (PSG) audio data sets, 297 smartphone audio data sets synced with PSG,
and a home noise data set containing 22,500 noises to train the model to predict breathing events, such as apneas and hypopneas,
based on breathing sounds that occur during sleep. The whole breathing sound of each night was divided into 30-second epochs
and labeled as “apnea,” “hypopnea,” or “no-event,” and the home noises were used to make the model robust to a noisy home
environment. The performance of the prediction model was assessed using epoch-by-epoch prediction accuracy and OSA severity
classification based on the apnea-hypopnea index (AHI).

Results: Epoch-by-epoch OSA event detection showed an accuracy of 86% and a macro F1-score of 0.75 for the 3-class OSA
event detection task. The model had an accuracy of 92% for “no-event,” 84% for “apnea,” and 51% for “hypopnea.” Most
misclassifications were made for “hypopnea,” with 15% and 34% of “hypopnea” being wrongly predicted as “apnea” and
“no-event,” respectively. The sensitivity and specificity of the OSA severity classification (AHI≥15) were 0.85 and 0.84,
respectively.

Conclusions: Our study presents a real-time epoch-by-epoch OSA detector that works in a variety of noisy home environments.
Based on this, additional research is needed to verify the usefulness of various multinight monitoring and real-time diagnostic
technologies in the home environment.
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Introduction

Multinight prescreening and follow-up monitoring of obstructive
sleep apnea (OSA) at home might lead to better management
[1]. For instance, if multiple prescreening of sleep disordered
breathing can be performed at home in a simpler way, OSA
underdiagnosis can be improved by motivating patients to visit
the hospital. In addition, if OSA can be monitored frequently
at home during weight loss for OSA treatment, it will motivate
patients to make more active efforts. Since OSA occurs during
sleep, diagnosis and monitoring of sleep breathing disorders
require objective tests. Attended polysomnography (PSG) and
the home sleep apnea test (HSAT) with a reduced number of
sensor channels have been playing an essential role in the
diagnosis of OSA. However, due to their high cost and
accessibility, multinight prescreening or follow-up monitoring
using conventional sleep tests (levels I, II, III, and IV), such as
PSG and HSAT, is difficult. Furthermore, successful assessment
via PSG comes at a cost of burdensome sensor equipment and
manual sleep scoring by clinicians. Beyond conventional sleep
tests, many efforts have been made to achieve more
convenience, fewer sensors, and even noncontact assessment
of OSA [2]. Sound-based OSA assessment holds great potential
since it can be integrated with smartphones and smart speakers
to provide full noncontact monitoring of OSA.

The nature of breathing sounds during sleep varies according
to the patency of airways. During sleep, as the activity of the
upper airway dilator muscle decreases, the collapsibility of the
upper airway increases. Thus, the breathing sound might become
louder than that during wakefulness. When an apnea event
occurs, no breath sound can be heard due to a cessation of
breathing. However, when the apnea is over, the airway reopens
and a loud breath sound can be produced. As for hypopnea,
unlike snoring, the airway is narrowed without airway vibration.
Thus, it can be estimated that the breathing sound will become
smaller and irregular. Therefore, it is expected that it will be
possible to detect respiratory events based on sounds generated
during sleep. Many studies have been conducted on the acoustic
characteristics of breathing sounds [3,4]. Since these studies
focused on the acoustic features of ordinary breathing sound,
the entire-night nocturnal sound was given as input and the OSA
severity of that night was evaluated. However, a more natural
and correct way to diagnose OSA is to detect and count
individual apneic and hypopneic events. Only a few recent
studies have tried to detect apnea events by observing the
recovery breath or loud gasp after an apnea event [5]. Deeper

investigations into OSA event detection under various and
severe home environment noises are needed.

Acoustic apnea detectors validated in hospitals might fail at
home as they can be affected by various types of noises from a
residential environment. A machine learning or deep learning
model for in-home assessment should be trained and tested with
data collected from a home sleep study to guarantee
performance. However, the difficulty of a home sleep study is
well known. Similar difficulties have been challenged in various
deep learning fields, such as speech recognition [6]. To train a
robust deep learning model in real-world speech applications,
clean speech data were contaminated [6]. While adding noises,
such as alarms, door knocks, telephone ringing, and television,
the signal-to-noise ratio (SNR) can be randomly set to generate
abundant combinations of distorted sounds.

In this study, we aim to build a real-time detector of sleep apneas
and hypopneas based on breathing sounds recorded on a
smartphone during sleep and the prediction will be reinforced
by training with home noises.

Methods

Sleep Breathing Sound Data Set
We included a total of 1315 audios with full-night, in-laboratory
PSG performed between January 2015 and December 2020.
Among them, 1018 (77.41%) recordings were from the PSG
microphone (SUPR-102, ShenZhen YIANDA Electronics Co.
Ltd., Shenzhen, China) installed on the ceiling 1.7 m above the
subject’s head, and 297 (22.59%) recordings were from the
smartphone microphone (LG G3, LG Electronics, Inc, Seoul,
Republic of Korea) placed on a bed table 1 m away from the
subject. Some recordings were made simultaneously with both
microphones. However, such recordings were excluded from
this study for subject-independent evaluation.

We split our sleep breathing data set into a training data set and
a test data set. The test data set was composed of only
smartphone audios since our region of interest was at-home
service. The test data set was designed to have a similar number
of subjects for AHI<15 events/hour and AHI≥15 events/hour,
since 15 was often used as a threshold to decide the prevalence
of problematic OSA. Detailed baseline subject characteristics
of the test data set are presented in Table 1. The rest of the data
belonged to the training data set. Although PSG audios
accounted for the majority of the training data set, they provided
sufficient information to train the model due to their similarity
to smartphone audios with a large number and variety of data.
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Table 1. Demographic characteristics of subjects in the sleep breathing data set (N = 1315).

Test (n=150, 11.41%), n (%)Training and validity (n=1165, 88.59%), n (%)Characteristics

47.14 (12.36)52.77 (13.70)Age (years), mean (SD)

125 (83.33)825 (70.82)Males, n (%)

BMI

26.51 (3.99)26.02 (4.09)BMI, mean (SD)

2 (1.33)22 (1.89)BMI<18.5, n (%)

52 (34.67)513 (44.03)18.5≤BMI<25, n (%)

76 (50.67)467 (40.09)25≤BMI<30, n (%)

20 (13.33)163 (13.99)BMI≥30, n (%)

AHIa

24.11 (19.42)24.84 (23.55)AHI, mean (SD)

27 (18.00)255 (21.88)AHI<5, n (%)

48 (32.00)268 (23.00)5≤AHI<15, n (%)

48 (32.00)268 (23.00)15≤AHI<30, n (%)

27 (18.00)374 (32.10)AHI≥30, n (%)

aAHI: apnea-hypopnea index.

Home Noise Data Set
The home noise data set consisted of various types of sounds
that might occur in a residential environment. A total of 22,500
sounds were downloaded from Freesound [7], an open sound
effect library. The length of the sounds ranged from 30 seconds
to 2 hours. The home noise data set was grouped into 9 different
categories: home appliance, room noise, contents, clock, speech,
animal, air conditioner and fan, rain and wind, and car and
motorbike (see Table S1 in Multimedia Appendix 1). Each
group was divided into training noises and test noises. Training
noises were used along with the training data set in consistency
training for model robustness. Test noises were added to the
test data set to simulate sleep breathing sounds recorded in
various home environments.

Preprocessing
In this study, the OSA event presence detection window was
set as 1 epoch (30 seconds). The entire night recording of each
patient was divided into 30-second segments and converted to
a Mel spectrogram for visual representation of audio to visualize
how the sound energy in each frequency bin changed over time.
The Mel spectrograms were synchronized with manually
annotated sleep apnea events from PSG. In this paper, we
omitted central apnea and regarded only OSA events as apnea.

Each Mel spectrogram was labeled as one of “apnea,”
“hypopnea,” or “no-event” according to the presence or absence
of an apnea event during the segment period. If there was no
event during the segment period, the Mel spectrogram was
labeled as “no-event.” If there was 1 existing event, the Mel
spectrogram was labeled following the type of event. If 2 types
of events existed in 1 segment period, the segment was labeled
as the type of event having a longer period.

Training Overview
The acoustic apnea event detector model inputs Mel
spectrograms of sleep breathing sounds and outputs the
distribution probability of the OSA event classes for each epoch
(“apnea,” “hypopnea,” or “no-event”). In this work, the
confidence of a class in a prediction refers to its probability
given by the model. The event class that had the highest
confidence was chosen to be the final estimation of the model
for the input. The overnight AHI was estimated based on the
epoch-by-epoch detection result. The algorithm for training the
model was divided into 2 components. The first component was
supervised learning for OSA event detection. For supervised
learning, the model was trained to predict the existence of apnea
events from the input of sound data using a large-size data set.
The second component was home noise consistency training.
Home noises were used to simulate home sleep sounds by
adding them to sleep breathing sounds, and we trained the model
with simulated home training data sets to make the model robust.
Testing with a clean test data set validated our model in a
hospital environment. The model was also tested with various
simulated home environments generated by adding various
noises with different SNRs.

Deep Neural Network Architecture
In this work, we modified the SoundSleepNet [8] architecture
originally designed for sleep stage prediction, for
epoch-by-epoch OSA event detection. Although predicting the
sleep stage requires long-term analysis of how the respiratory
pattern and breathing sound change, detecting OSA events does
not require such long-term analysis. Since the length of apneic
events mostly ranges from 10 to 60 seconds, observing the past
and future for just 1 or 2 epochs will help. Although the original
architecture processed 40 Mel spectrograms to output sleep
stages of the middle 20 epochs (40-20), we modified the
architecture to get input of 14 epochs and output 10 epochs of
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OSA event labels (14-10). Here, the OSA event label is one of
“apnea,” “hypopnea,” and “no-event.” In detail, the model
architecture was composed of 2 core elements: feature extractor
and multiepoch detector. The feature extractor observed each
Mel spectrogram to extract features of unique sounds of apneic
events. Then, the multiepoch detector located epochs that
contained apneic events, and predicted the type of the events
by analyzing neighboring features.

Overcoming Class Imbalance With Class Weights
To overcome the problem of data imbalance among classes,
where the amount of data in the “no-event” class dominated
those of other classes, we used different weights for different
classes. To make sure the model did not get too biased to
“no-event,” we penalized the incorrect predictions of “apnea”
and “hypopnea” more by giving higher weights to them than to
“no-event” during training. By empirical methods, we found
assigning the weights of 1.0, 1.3, and 2.1 to “no-event,” “apnea,”
and “hypopnea,” respectively, gave the best result.

Home Noise Consistency Training
Consistency loss is a key to making the model work under home
noise. It guides the model to output similar predictions with and

without the noise, which means the model becomes robust to
the noise. Consistency loss is defined as a mean-squared error
(MSE) between the prediction of the clean sleep breathing sound
and the prediction of the corrupted version of that sound. To
generate a corrupted sound, noise data were randomly sampled
from training noises and added to the clean sleep breathing
sound with random SNRs ranging from –20 to 5. Since the
length of the input sequence was 14 epochs, which was 7
minutes in time, we sampled noise until the total length of the
sampled noise reached more than 7 minutes. The concatenated
noise was then added to the input sequence to generate the
corrupted sound.

The weighted sum of consistency loss and cross-entropy loss
was used to train the model. The cross-entropy loss, which is
generally used for supervised training, represents the difference
between the predicted apnea class probability and the observed
label. The cross-entropy loss can be calculated only from the
clean sleep breathing sound data. It guides the deep learning
model to predict the correct class. A simple data augmentation
(pitch shifting) was applied for additional robustness. Figure 1
illustrates the consistency training process

Figure 1. Consistency training with noise-added inputs. In each training iteration, 1 input sequence of the Mel spectrogram, 1 sequence of noise, and
1 SNR value between –20 and 5 are chosen. The noise sequence is added to the clean input with respect to the given SNR to make the noise-added
version of the clean input. Both clean and noise-added inputs are fed into the model 1 by 1. Two loss terms are calculated at this stage: (1) the cross-entropy
loss between the output from the clean input data and the ground truth and (2) the consistency loss between the output from clean and noise-added
inputs. The final loss is the summation of the 2 loss terms. It is used to update the model accordingly. DNN: deep neural network; SNR: signal-to-noise
ratio.

We adopted a 2-step training algorithm: (1) 1-to-1 pretraining
and (2) 14-to-10 training [8]. In the 1-to-1 pretraining, where
the model worked with 1 epoch data, we used an initial learning
rate of 0.01 and decreased it 10 times whenever the macro
F1-score in validation did not increase for 3 consecutive epochs.
As for the 14-to-10 training, the primary model, the slanted
triangular learning rate scheduler, and gradual unfreezing were
applied for better fine-tuning of the pretrained model [9]. For
the detailed training setting, we used the stochastic gradient
descent optimizer and fixed the number of training epochs at
10 in all experiments. The checkpoint with the highest macro
F1-score in the validation was selected as the best model.

Statistical Analysis

AHI Estimation With Regression Modeling
Since OSA events are annotated independently of the sleep
stage label, a single event can be split into 2 or 3 consecutive
epochs. On the contrary, 2 short events can belong to 1 epoch.
Thus, regression modeling was performed to estimate the AHI
from the average counts of estimated apneic epochs per hour.
Statistics showed that a linear function model successfully
represented the relationship between the number of epochs that
were labeled as “apnea/hypopnea” and the AHI reference value
from PSG for the data in the training data set. Thus, we adopted
the linear regression model to estimate the AHI value, which
is simple and fast enough to be used in real-time applications.
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The best linear fit with the RANSAC regressor [10] was derived
from the training data set. It was used to estimate the AHI value
during the test. See Multimedia Appendix 1 for details.

Evaluation Metrics
We evaluated our model on 2 aspects: epoch-by-epoch OSA
event detection and overnight AHI estimation. For
epoch-by-epoch OSA event detection, we evaluated the model
for the 3-class case (“apnea,” “hypopnea,” and “no-event”) and
the 2-class case (“apnea/hypopnea” and “no-event”). The
performance was evaluated using several metrics (ie, accuracy,
Cohen κ, and macro F1-score). We selected the macro F1-score
as our primary metric since it is known to be less sensitive to
class imbalance problems. For overnight AHI estimation, the
model was evaluated mainly with sensitivity, specificity, and
the area under the curve (AUC) of OSA screening, with AHI
cut-offs of 5, 15, and 30, respectively. Moreover, AHI estimation
results were directly compared with the observed AHI using a
Bland-Altman plot.

Ethical Considerations
The use of the Hospital PSG dataset in this study was approved
by the Institutional Review Board (IRB) of SNUBH (IRB No.

B-2011/ 648-102). As per the Smartphone PSG dataset, a written
informed consents were obtained according to the Declaration
of Helsinki and the study protocol was approved by the
Institutional Review Board of Seoul National University
Bundang Hospital (IRB No. B-1912-580-305). All participants
signed the written consents before the recording were made.

Results

Performance of the Model in a Hospital Environment

Epoch-by-Epoch OSA Event Detection
In this section, the model was evaluated with a clean test data
set collected in a hospital environment. In the 3-class case, the
accuracy was 86% and the macro F1-score was 0.75. The model
had an accuracy of 92% for “no-event,” 84% for “apnea,” and
51% for “hypopnea.” Most misclassifications were made for
“hypopnea,” with 15% and 34% of “hypopnea” being wrongly
predicted as “apnea” and “no-event,” respectively (Figure 2).
In a 2-class case where “apnea” and “hypopnea” were merged
into 1 class, the model achieved an accuracy 88.8%, with a
macro F1-score of 0.86 (Table 2).

Figure 2. Epoch-by-epoch confusion matrices of the model's detection for (a) 3-class (“apnea,” “hypopnea,” “no-event”) and (b) 2-class (“apnea/hypopnea”
and “no-event”) classifications. PSG: polysomnography.
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Table 2. Epoch-by-epoch OSAa event detection performance of the model with a clean data set without noise (the model takes 30-second epochs as
input and outputs the classification result of the corresponding epoch for 3- and 2-class cases).

ValueClassification and parameters

3-Class cases (“apnea,” “hypopnea,” and “no-event”)

0.75Macro F1-score

85.9Accuracy (%)

0.66Cohen κ

0.92“No-event” sensitivity

0.81“No-event” specificity

0.84“Apnea” sensitivity

0.96“Apnea” specificity

0.52“Hypopnea” sensitivity

0.93“Hypopnea” specificity

2-Class cases (“apnea/hypopnea” and “no-event”)

0.86Macro F1-score

88.8Accuracy (%)

0.71Cohen κ

0.81“Apnea/hypopnea” sensitivity

0.92“Apnea/hypopnea” specificity

aOSA: obstructive sleep apnea.

Figure 3 displays 2 examples that compare observed events
from PSG and predicted events using our method for 2 subjects.
One is in the severe-sleep-apnea group (Figure 3a; AHI
reference value=70.1 events/hour, macro F1-score=0.81), and
the other is in the mild-sleep-apnea group (Figure 3b; AHI
reference value=9.2 events/hour, macro F1-score=0.70). The
model output predictive probabilities of each of the 3 classes,
called “confidence,” as shown in the last row of Figure 3. From
the whole data set, the average confidence of the correctly

predicted epochs was 0.89 and the average confidence for the
incorrectly predicted epoch was 0.67, meaning that the model
is more confident when it predicts correctly. Similar trends were
observed for the 2 patients with severe and mild apnea,
respectively. For the first subject, the average confidence was
0.80 for correctly predicted epochs and 0.65 for incorrectly
predicted epochs. The average confidence for the second subject
was 0.87 for correctly predicted epochs and 0.59 for incorrectly
predicted epochs.
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Figure 3. Epoch-by-epoch comparison between observed events from PSG (first row) and predicted results using our method (second row) for 2
subjects: (a) AHI=70.1 and (b) AHI=9.2. Each vertical line represents the label for one 30-second epoch over the whole night. The last row presents
probabilities of distribution over 3 classes predicted by our model, which indicates the confidence of model prediction. AHI: apnea-hypopnea index;
PSG: polysomnography.

Overnight AHI Estimation
Table 3 summarizes the performance of OSA risk screening
assessed with the binary classification with generally accepted
AHI cut-off points (5, 15, and 30 events/hour). The model
achieved the performance with an AHI cut-off of 5, showing a

sensitivity, specificity, and AUC of 0.97, 0.89, and 0.93,
respectively. With an AHI cut-off value of 15, the sensitivity,
specificity, and AUC were 0.85, 0.84, and 0.85, respectively.
With an AHI cut-off value of 30, the model had a sensitivity,
specificity, and AUC of 0.96, 0.91, and 0.94, respectively.
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Table 3. Overnight AHIa estimation. Performance results of the model, including sensitivity, specificity, and AUCb, are presented, with the number
of nights below and above each AHI cut-off point.

30155AHI cut-off points “c”

123 (82)/27 (18)75 (50)/75 (50)27 (18)/123 (82)Number of subjects

AHI<c, n (%)/AHI≥c, n (%)

0.960.850.97Sensitivity

0.910.840.89Specificity

0.940.850.93AUC

aAHI: apnea-hypopnea index.
bAUC: area under the curve.

Figure 4a shows a correlation plot between the observed AHI
and AHI estimates. It shows a mean absolute error of 4.88
events/hour and a correlation coefficient of 0.98. Figure 4b

displays a Bland-Altman plot. The mean difference between
the AHI estimation and the observed value was approximately
0.87 (95% CI −12.09 to 13.82) events/hour.

Figure 4. Overnight AHI estimation. (a) Correlation and (b) Bland-Altman plots of estimated and measured AHI. AHI: apnea-hypopnea index; PSG:
polysomnography.
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Performance of the Model in a Simulated Home
Environment
One of the key goals of this research was to validate the model
in a simulated home environment by adding various types of
home noises to a clean test data set. Experimental results showed
an effect of the proposed training method with home noise and
verified the robustness of our model in a noisy environment.

Robustness to Noise With Varying SNRs
Table 4 shows the results of the comparison between our model
and a control model. The control model adopted the same neural

network architecture as ours. However, it was trained only with
clean sleep sound data. Both models were tested using the home
noise–added test data set with varying SNRs (5 to –30). As the
SNR decreased (the power of the noise sound became larger),
the performances of both models degraded, with the degradation
of our model being relatively smaller than that of the control
model. When the power of the noise and sleep sound was the
same, that is, SNR=0, our model had a macro F1-score of 0.72,
which showed a 4% degradation compared to testing with a
clean test data set, whereas the control model had a macro
F1-score of 0.64, with a 15% degradation.

Table 4. Epoch-by-epoch comparison of the macro F1-score between our model and the control model across multiple SNRa values (10 to –30).

–30–25–20–15–10–505No noiseSNR

0.580.620.650.680.690.710.720.730.75Macro F1-score of our model

0.390.430.470.520.570.610.640.670.75Macro F1-score of the control model

aSNR: signal-to-noise ratio.

Impact of the Noise Group on Training and Testing
Figure 5a presents the effects of different noise types. The home
noise data set was grouped into 9 different categories according
to the noise source. Detailed information about the noise

grouping can be found in Multimedia Appendix 1. We trained
9 different models. Each model used only 1 noise group for
training. Each trained model was validated with 9 test data sets
simulated by adding each noise group with an SNR of –50.
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Figure 5. Epoch-by-epoch results for the impact of training with noises on performance. (a) The result of 1 group training and testing for 9 different
noise groups. Each row of the first 9 rows represents a model trained on the same train data set, with additional noise from 1 noise group. The columns
represent the test data sets that the models were tested on. We created a heat map based on the value in each column: The highest value is presented in
dark green, while the lowest value is presented in white. For better visualization, we left all the test on clean data (rightmost column) and from the
control model (bottom row) uncolored. (b) Performance of the model with different portions of noise files used during training.

We observed that our model was weak for certain noise groups,
such as fan and air conditioner (group 0), human voice (group
1), and digital content (group 2). The macro F1-score of the
model dropped to 0.57, 0.59, and 0.61 for groups 0, 1, and 2,
respectively. There was a performance gap between the control
model and our model. It was significant for groups 1 and 2 when
the model was tested with test data sets simulated with noise
related to human speech. Training with simulated home sound
improved the macro F1-score from 0.34 to 0.59-0.61 for groups
1 and 2. Each model achieved the best macro F1-score when

trained and tested with the same noise group, explaining the
bolder diagonal in Figure 5a. Our model trained with all noise
groups achieved the best or second-best performance when
tested with each noise group 1 by 1 and performed best on the
test data set combined with all noise groups.

Figure 5b shows the effects of the number of noise files used
while training. As more noise files were used for training, the
performance of the model improved. However, it was almost
saturated at near 4500 files, which accounted for 20% of our
home noise data.
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Figure 6 presents a Mel spectrogram of 3 epochs (“apnea,”
“hypopnea,” and “no-event”). The “no-event” epoch showed a
regular pattern of breathing sounds, while “apnea” had a
recovery breath or a loud gasp after events. Figure 6a shows
the Mel spectrogram corrupted by noise with an SNR of 30,
which makes it hard for a human to detect OSA. However, even
in this case, the model succeeded in classifying all events with

high confidence. The result also showed the effects of different
types of noise. As shown in Figure 6a, when a stationary noise
was added, the model was robust for “apnea” and “no-event”
epochs but not for “hypopnea.” However, as shown in Figure
6b, when an event-driven noise was added, an opposite trend
was found.
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Figure 6. Epoch-by-epoch effects of noise types and SNR values on the model’s prediction for the same sleep epochs. One noise file was selected
representing either (a) stationary or (b) event-driven type of noise. The file was added into the same select time frames, each from 1 class (denoted as
A, B, and C). The top row displays Mel spectrograms of the clean data. Each row below represents Mel spectrograms of each noise-added data with
respect to the SNR values written in the middle of the figure and the clean data above. Estimations and confidence graphs of the model corresponding
to each value of SNR are displayed on the right-hand side of the figure. SNR: signal-to-noise ratio.

Discussion

Principal Findings
This study proposed a robust acoustic apnea event detector and
proved that it could work under a simulated home environment

generated with various groups of background noises and
nonstationary noises from the interior and exterior. Our key
findings were as follows:
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• The proposed model could detect the sound of a recovery
breath or a loud gasp after an apnea event. Therefore, it
could successfully detect epoch-by-epoch OSA events.

• By leveraging noises during model training, the model was
able to overcome the simulated noisy environment in the
test.

• The proposed model was robust for various noise types that
the model never experienced during the training.

Therefore, the model trained with a limited number of noises
can work well for a general environment with various noises.

Effect of Home Noise–Added Sleep Breathing Sounds
To the best of our knowledge, this is the first work to use
simulated PSG-labeled home-recorded sounds generated by
simply adding separately collected home noises to in-lab sleep
breathing sounds to train and test the model for OSA event
detection. Benefits of simulated sounds are as follows: First,
simulated sounds are indistinguishable from the real sounds
recorded in a home environment, because the characteristics of
the sounds are additive. Second, we can generate various
intended sounds by controlling the SNR and types of noises. In
addition, sounds that rarely occur in realistic home environments
or even sleep sounds where humans can hardly fall asleep can
also be generated. Finally, both home noises and in-lab sleep
breathing sounds are easy to collect.

Experiment results proved the impact of using the simulated
home-recorded sounds during training. First, our model seemed
to overcome a noisy environment where the control model failed
to distinguish noise from the sound of apneic events. The
performance of the control model dropped rapidly even from
SNR=5, where the average power of noise was less than
one-third of that of the sleep breathing sound. However, the
performance of our model was maintained until SNR=–5, where
the average power of noise was more than 3 times that of the
sleep breathing sound. The performance gap between the control
model and our model kept increasing when the power of noise
increased until the SNR was –30.

Second, our model was able to be generalized to inexperienced
noise. When trained on only 1 group of noise at a time, the
model showed an acceptable performance degradation of 3%
on the macro F1-score, even with the lowest SNR setting of
–20. This indicates that our model will also work on unseen
types of noises in practice. Moreover, the model reached
saturated performance even with only 20% of the entire noise.
This means that a limited but enough number of noises could
make the model become generalized enough to work with any
noises.

Experimental results demonstrated that our model is weak for
certain types of noise. For the stationary type of noise that does
not change over time, such as fan and air conditioner noises,
the sleep breathing sound is masked, making it more difficult
to detect the event. The noise group experiment showed a similar
trend. The model showed worse performance for fan and air
conditioner (group 0) noises known to have a typical stationary
noise than for other noise groups. Other noise groups for which
our model (trained with noise) and the control model (trained
without noise) did not work well were groups 1 and 2, which

were related to human speech. The performance degradation
was more severe for the control model because in the training
data that recorded the sound during PSG, the speech might be
recorded when subjects were awake and OSA labels of these
epochs were always “no-event.” Thus, the model tended to
predict the epoch as “no-event” when speech was included in
the input sound. However, this was alleviated when we applied
the proposed training by adding noise.

Comparison With Other Studies With Contact
Biosignals
We compared our study with other studies examining various
biosignals other than sounds, such as pulse oximetry,
electrocardiography (ECG), and pressure sensors. Several
studies have used pulse oximetry as an input to the model
[11-13]. In a recent study [11] of automatic OSA detection based
on pulse oximetry analysis with 92 subjects, the epoch-by-epoch
2-class macro F1-score was 0.84, with an accuracy of 91%.
These performance results were similar to those of our model.
That recent study [11] showed a higher accuracy but a lower
macro F1-score than ours. The study also estimated an AHI
value through similar counting and regression modeling as ours.
In that study [11], for OSA risk screening with an AHI cut-off
of 15 events/hour, the sensitivity was 0.96 and the specificity
was 0.95, which outperformed our model because oxygen
desaturation was a concomitant of incomplete breathing. The
ECG is another signal that can be used for AHI estimation
[14,15]. A study [14] with 97 subjects achieved a sensitivity of
0.89 and a specificity of 0.83 when the AHI cut-off was 10. One
study [16] used more than 1 signal simultaneously, such as a
pressure sensor signal, sound, actigraphy, and respiration. It
reported a sensitivity of 0.88 and a specificity of 0.89 at an AHI
cut-off of 15 with 118 subjects [16]. These performance results
were comparable to or better than ours. However, unlike the
study that required a contact device to measure the signal or
buy an additional device [16], ours is easier to implement
because breathing sounds can be easily recorded by a
smartphone.

Comparison With Other Sound-Based Studies
Several studies have taken nocturnal sound as an input source.
One study extracted features of the sound for the whole night
and applied machine learning algorithms to those features to
directly estimate the overnight AHI value [4] and achieved a
sensitivity of 0.87 and a specificity of 0.71, with an AHI cut-off
of 15 using 167 subjects. A recent study [17] took the Mel
spectrogram for an epoch (30-40 seconds) as an input to the
model and estimated the AHI through regression modeling. For
OSA risk screening with a cut-off of 15, it achieved a sensitivity
of 0.79 and a specificity of 0.80 with 103 participants [17].
These studies focused only on the estimation of the overnight
AHI. However, our model not only outperformed these other
models in estimating the AHI value but also provided
information about which events might occur and when using
epoch-by-epoch OSA event detection.

Application
One of the key contributions of this study is that our model is
designed for epoch-by-epoch detection of OSA events in real
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time. Therefore, it can be used along with real-time intervention
devices, such as light and sound intervention, vibration, and
position change, to improve respiratory disturbances during
sleep at home [17,18]. In addition, our model provides
convenient detection of OSA events overnight and allows for
easier long-term multinight monitoring of patients with sleep
apnea in the home environment. Thus, this method can also be
used to monitor the effect of lifestyle modification.

Limitation of This Work
Results suggest that our model works well in distinguishing
“no-event” and “apnea,” while the performance for classifying
“hypopnea” is not as good. Reasons can be twofold: (1) Data
imbalance among the 3 classes is severe in the real world, where
the number of samples for hypopnea is merely one-tenth of that
for the “no-event” class, and (2) clues for detecting apnea are
strong enough that the model can predict even in a noisy
environment, while irregular patterns in hypopnea can be
mistaken for noise from the environment. Even with a carefully
calibrated set of class weights, the problem of data imbalance

is fundamentally difficult and can only be solved optimally by
gathering enough data. In future studies, we will use a more
diverse data set using the data we have been collecting with
local hospitals. Further collection of data and building a better
model could solve this problem. Merging with other devices
for different biosignals might improve the performance of the
model for detecting hypopnea.

Conclusion
In conclusion, this study presents a smartphone-based acoustic
apnea event detector with potential to be used as a tool for
multinight prescreening and follow-up monitoring of OSA at
home. By leveraging home noises during model training and
testing, we built a model proven to be robust in various home
environments. A deeper analysis gained more insight into
conditions under which the model could practically be used.
Future works are needed to use epoch-by-epoch OSA event
detection for real-time intervention devices to mitigate the
severity of OSA.
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