Published on in Vol 26 (2024)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/48527, first published
.

Journals
- Wei J, Wang M, Wu Y. A disulfidptosis-related lncRNAs cluster to forecast the prognosis and immune landscapes of ovarian cancer. Frontiers in Genetics 2024;15 View
- Zhang C, Yang J, Chen S, Sun L, Li K, Lai G, Peng B, Zhong X, Xie B. Artificial intelligence in ovarian cancer drug resistance advanced 3PM approach: subtype classification and prognostic modeling. EPMA Journal 2024;15(3):525 View
- Avci C, Bagca B, Shademan B, Takanlou L, Takanlou M, Nourazarian A. Machine learning in oncological pharmacogenomics: advancing personalized chemotherapy. Functional & Integrative Genomics 2024;24(5) View
- Lee Z, Cai J, Wang L, Yang M. Ensemble Algorithm Based on Gene Selection, Data Augmentation, and Boosting Approaches for Ovarian Cancer Classification. Diagnostics 2024;14(24):2772 View
- Piedimonte S, Mohamed M, Rosa G, Gerstl B, Vicus D. Predicting Response to Treatment and Survival in Advanced Ovarian Cancer Using Machine Learning and Radiomics: A Systematic Review. Cancers 2025;17(3):336 View
- Abdul Rasool Hassan B, Mohammed A, Hallit S, Malaeb D, Hosseini H. Exploring the role of artificial intelligence in chemotherapy development, cancer diagnosis, and treatment: present achievements and future outlook. Frontiers in Oncology 2025;15 View
- Zhou Y, Tong F, Jin B, Pan J, Ren N, Ren L, Xu Q. Relacorilant plus nab-paclitaxel for recurrent, platinum-resistant ovarian cancer: a cost-effectiveness study. Journal of Gynecologic Oncology 2025;36(4) View
- Zeng X, Li Z, Dai L, Li J, Liao L, Chen W. Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024. Discover Oncology 2025;16(1) View
- Huang M, Law H, Tam S. Use of Radiomics in Characterizing Tumor Hypoxia. International Journal of Molecular Sciences 2025;26(14):6679 View
