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Abstract

Background: Machine learning is a potentially effective method for predicting the response to platinum-based treatment for
ovarian cancer. However, the predictive performance of various machine learning methods and variables is still a matter of
controversy and debate.

Objective: This study aims to systematically review relevant literature on the predictive value of machine learning for
platinum-based chemotherapy responses in patients with ovarian cancer.

Methods: Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we
systematically searched the PubMed, Embase, Web of Science, and Cochrane databases for relevant studies on predictive models
for platinum-based therapies for the treatment of ovarian cancer published before April 26, 2023. The Prediction Model Risk of
Bias Assessment tool was used to evaluate the risk of bias in the included articles. Concordance index (C-index), sensitivity, and
specificity were used to evaluate the performance of the prediction models to investigate the predictive value of machine learning
for platinum chemotherapy responses in patients with ovarian cancer.

Results: A total of 1749 articles were examined, and 19 of them involving 39 models were eligible for this study. The most
commonly used modeling methods were logistic regression (16/39, 41%), Extreme Gradient Boosting (4/39, 10%), and support
vector machine (4/39, 10%). The training cohort reported C-index in 39 predictive models, with a pooled value of 0.806; the
validation cohort reported C-index in 12 predictive models, with a pooled value of 0.831. Support vector machine performed
well in both the training and validation cohorts, with a C-index of 0.942 and 0.879, respectively. The pooled sensitivity was 0.890,
and the pooled specificity was 0.790 in the training cohort.

Conclusions: Machine learning can effectively predict how patients with ovarian cancer respond to platinum-based chemotherapy
and may provide a reference for the development or updating of subsequent scoring systems.

(J Med Internet Res 2024;26:e48527) doi: 10.2196/48527
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Introduction

Background
Ovarian cancer is one of the most common cancers worldwide
[1], and this gynecological cancer is characterized by poor
prognosis and high mortality [2]. It is estimated that epithelial
ovarian cancer (EOC) represents 90% of the ovarian cancer
cases [3], with serous carcinoma being the most common
pathological type [4]. Because of the absence of cancer-specific
symptoms and effective screening techniques, EOC is frequently
diagnosed at a late stage [5,6]. Despite undergoing relevant
treatments, patients with ovarian cancer still face high rates of
recurrence and mortality, with a 5-year survival rate of <30%
[7]. According to GLOBOCAN 2020, the number of new
ovarian cancer cases in low and high Human Development
Index countries will increase by approximately 96% and 19%,
respectively, by 2040 [8].

Currently, the National Comprehensive Cancer Network
Guidelines (2023 Edition) recommend the use of paclitaxel or
carboplatin for 3 weeks as the first-line treatment for stage 2 to
4 EOC [9]. Although platinum-based chemotherapy is effective
in most patients with ovarian cancer, resistance may occur in
some patients [10]. In addition, their response to platinum
treatment is unknown until chemotherapy is completed. The
platinum-free interval is a reliable indicator for predicting
treatment efficacy and patient prognosis because it can evaluate
whether patients with ovarian cancer respond to platinum drugs
and their recurrence [11,12]. The Gynecologic Cancer Group
divides responses to platinum chemotherapy into 4 categories
based on the duration of platinum-free interval (platinum
refractory: <1 mo, platinum-resistant: 1-6 mo, partial platinum
response: 6-12 mo, and platinum response: >12 mo) [13]. The
chemoresistance of ovarian cancer may be related to genome
expression [14,15], tumor heterogeneity, intestinal microbiota,
DNA repair [16], DNA methylation [17,18], and mitochondrial
function [19,20] related to immunoediting. Within 2 years,
approximately 70% of these patients relapse [21]. Therefore,
predicting the response to platinum-based chemotherapy in
patients with ovarian cancer is critical. Despite the emergence
of multiple approaches, including mutational signatures,
transcriptomic signatures, tumor mutation burden, and functional
biomarkers, there is no conclusive evidence to guide the precise
treatment of patients with ovarian cancer [22].

Objectives
In recent years, with the increasing availability of medical data
and the continuous improvement in computer analysis
capabilities, machine learning has been increasingly used in the
medical field [23,24]. Machine learning is a technological
application that uses algorithms and data to enable computers
to automatically learn and enhance. It excels in handling large
amounts of complex and multidimensional information, thereby
improving the accuracy and efficiency of decision-making
[25-27]. In various domains of oncology, machine learning has
been used to identify cancer imaging features [28], predict the
risk of cancer recurrence [29], screen cancer drug targets [30],
and optimize cancer treatment options [31]. Some researchers
have explored machine learning–based methods to construct

prediction models for platinum reactions in ovarian cancer.
However, in the field of machine learning research, there is a
diverse range of methods and variables. The predictive
performance of these methods for outcome events remains
controversial. Currently, in evidence-based medicine, a
comprehensive summary of the predictive performance of
machine learning is lacking. Therefore, we conducted this study
to explore early risk stratification in response to platinum-based
chemotherapy in patients with ovarian cancer. Our aim was to
enhance chemotherapy management in patients with ovarian
cancer.

Methods

This study was carried out following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
2020 guidelines (Table S1 in Multimedia Appendix 1) and
registered on PROSPERO (CRD42022340928).

Data Sources and Searches
Relevant studies published before March 15, 2022, were
thoroughly searched in the PubMed, Web of Science, Embase,
and Cochrane databases. Search terms included subject headings
(Medical Subject Headings in PubMed and Emtree in Embase)
and free words, such as “Ovarian Neoplasms,” “machine
learning,” “prediction model,” and “Platinum-Based
Chemotherapy.” The specific search strategy is presented in
Table S1 in Multimedia Appendix 2. To prevent the risk of
missing new literature, we conducted a supplementary search
of each database until April 26, 2023.

Inclusion and Exclusion Criteria
The inclusion criteria were as follows:

• Patients diagnosed with ovarian cancer
• The research types are case-control, cohort, nested

case-control, and case cohort studies.\
• A completely constructed predictive model for platinum

chemotherapy (platinum-sensitive or platinum-resistant)
response in patients with ovarian cancer

• Studies without external validation
• Different machine learning studies published on the same

data set
• The literature written in English

Meanwhile, the following studies were excluded:

• The research type was meta-analysis, review, guideline,
expert opinion, etc

• Only a risk factor analysis was carried out, but no complete
machine learning prediction model was developed

• The following outcome measures were used: receiver
operating characteristic curve, concordance index (C-index),
sensitivity, specificity, accuracy, recovery rate, precision
rate, confusion matrix, diagnostic 4-grid table, F1-score,
and calibration curve. The original study should include at
least one of the above indicators. Missing studies need to
be excluded.

• Studies with small sample sizes (<50 cases)
• Research on the accuracy of single-factor prediction
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Literature Screening and Data Extraction
The retrieved studies were imported into EndNote (Clarivate
Plc) to remove duplicate publications automatically and
manually. Subsequently, we reviewed the titles or abstracts of
the remaining studies to exclude original studies that did not
align with the topic. We proceeded to read the full texts of the
remaining studies to screen the original studies that ultimately
met the criteria.

The following information was collected from each eligible
study: first author, year of publication, location, research
duration, population characteristics, background, number of
hospitals, study design (prospective or retrospective), number
of patients, age, histological classification of enrolled patients,
presence of tumor deposit after treatment, treatment methods,
prediction objects, chemotherapy methods, number of positive
samples, number of training set samples, total number of
samples, follow-up time, variable selection method,
characteristics of the machine learning approach (specific
algorithm or type), validation method (cross-validation, retention
method, external validation, or none), number of model
variables, included model variables, efficacy evaluation
indicators, sample size of the validation set, and prediction
results.

The literature screening and data extraction were independently
conducted by 2 researchers (QW and ZC). Following
completion, crosschecks were performed. In the event of any
disputes, a third researcher (XL) was consulted to assist in
resolution.

Quality Assessment
The Prediction Model Risk of Bias Assessment (PROBAST),
a technique for predicting the model risk of bias, was used to
assess the risk of bias in the predictive models reported in
eligible studies [32,33]. This tool consists of 4 major domains,
participants, predictors, outcomes, and statistical analysis, and
it reveals the overall risk of bias and applicability. The 4
domains have 2, 3, 6, and 9 distinct questions, respectively,
with 3 possible answers: yes or probably yes, no or probably
no, and no information. A domain is deemed high risk if it
receives at least 1 no or probably no question, whereas a domain
that receives yes or probably yes for all of its questions is
considered low risk. When all domains are classified as low
risk, the overall risk of bias is graded as low. Meanwhile, when

at least one domain is deemed high risk, the overall risk of bias
is regarded as high. Two investigators independently assessed
the risk of bias and crosschecked their findings using
PROBAST. Any disagreements were resolved by discussion
with a third researcher. The assessment of the risk of bias was
independently conducted by 2 researchers (YW and CF). Upon
completion, a crosscheck was performed. In case of any dispute,
a third researcher (YP) was consulted to assist in the
decision-making process.

Data Analysis
If the C-index lacked a 95% CI and SE, we referred to the study
by Debray et al [34], which estimated its SEs. Because machine
learning encompasses a wide range of mathematical models
and predictive factors, there is high heterogeneity among various
studies. Hence, a random effects model was used for the
meta-analysis. In addition, we used a bivariate mixed effects
model, which is a random effects model, to perform the
meta-analysis of sensitivity and specificity. At the same time,

we used the heterogeneity index (I2) to measure the
heterogeneity. P<.05 indicated a statistically significant
difference. Moreover, subgroup analysis was conducted to
increase the robustness of the results and reduce heterogeneity
between studies, according to the different types of prediction
models and the possible influencing factors, for instance,
whether it is high-grade serous ovarian cancer and whether there
is a tumor deposit.

Ethical Considerations
All analyses were based on previously published studies;
therefore, ethics approval and patient consent were not required.

Results

Search Strategy
A total of 1749 articles were obtained from the PubMed, Web
of Science, Embase, and Cochrane databases. After removing
752 duplicates, we screened the titles and abstracts and identified
261 potentially eligible articles. On the basis of a full-text
review, 242 studies were excluded, with 234 (96.7%) studies
deleted for inappropriate outcomes, 6 (2.5%) studies deleted
for inadequate data, and 2 (0.8%) studies deleted for no access
to the full text. Finally, this study included 19 articles. Figure
1 shows the study search strategy.
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Figure 1. Flow diagram of the study selection process.

Characteristics of Included Studies
The basic characteristics of the 19 eligible articles [35-53] are
presented in Table 1. Of the 19 studies, only one consisted of
patients who had recurrent ovarian cancer, whereas the
remaining 18 studies involved patients who had primary ovarian
cancer. There were 3 multicenter studies, 5 single-center studies,
and 11 database-based studies. In total, 15 studies were
externally validated. The 19 eligible studies involved 7137

patients, and the number of patients included ranged from 58
to 1002. These eligible studies contained 39 predictive models,
of which 22 reported sensitivity and specificity. The most widely
used modeling methods in the training cohort were logistic
regression (LR; 16/39, 41%), Extreme Gradient Boosting
(XGBoost; 4/39, 10%), and support vector machines (SVMs;
4/39, 10%), whereas the common modeling method in the
validation cohort was SVM (4/12, 33%).
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Table 1. Characteristics of the included studies.

External
validation
sample
size

External
validation

Type of modelVariable
selection
method

Overall
sample
size, n

Training
set sam-
ples, n/N
(%)

Positive
samples,
n/N (%)

ChemotherapySample
source

CountryStudy,
year

101SVMe, LRf,

KNNg, DTh, Ad-

—d6050/60 (83)39/50
(78)

CarboplatinGDSCa,

TCGAb,

and GEOc

SingaporeShannon
et al [35],
2021

aBoosti, GBMj,

and XGBoostk

—0LR, RFl, SVM,

and DNNm

Univariate
and multi-
variate
analysis

10021002/1002
(100)

779/1002
(77.7)

Platinum-
based combi-
nation
chemotherapy

The Seoul
National
University
Hospital,
Asan Medi-

KoreaHwangbo
et al [37],
2021

cal Center,
and Sever-
ance Hospi-
tal

4541LR, COXn,

SVM, and ANNo

Univariate
and multi-
variate
analysis

707129/707
(18.2)

42/129
(32)

Platinum-
based combi-
nation
chemotherapy

GEO and
TCGA

ChinaZhao et al
[38],
2019

—0LRUnivariate
and multi-

757757/757
(100)

616/757
(81.4)

Platinum-
based combi-
nation
chemotherapy

Samsung
Medical
Center

KoreaPaik et al
[39],
2017 variate

analysis

1221SPCpPrincipal
compo-

322200/322
(62.1)

177/200
(88.5)

Platinum or
paclitaxel-
based treat-
ment

TCGA and
GEO

ChinaHan et al
[40],
2012 nents

method

—0LRUnivariate
and multi-

9171/91 (78)22/71
(31)

Platinum or
paclitaxel-
based treat-
ment

Sun Yat-
Sen Univer-
sity Cancer
Center

ChinaLan et al
[36],
2019 variate

analysis

3881COXUnivariate
and multi-

44860/448
(13)

44/60
(73)

Taxol plus
platinum-
based
chemotherapy

Beijing
Cancer
Hospital,
Peking
Union

ChinaZheng et
al [41],
2021 variate

analysis

Medical
College
and TCGA

311RF and SVMLASSOq10271/102
(69)

26/71
(36)

Platinum-
based combi-
nation
chemotherapy

Hunan
Cancer
Hospital

ChinaYi et al
[42],
2021

—1AlexNets,

GoogLeNett,

——587/587
(100)

—Platinum-
based combi-
nation
chemotherapy

TCGA and

CPTACr
AmericaYu et al

[43],
2020

VGGNetu, SVM,
modern deep
convolutional
neural networks,
and multilayer
neural networks

—1RF, SVM, NBv,
and COX

LASSO130130/130
(100)

35/130
(2)

Platinum-
based combi-
nation
chemotherapy

TCGA and
CPTAC

AmericaYu et al
[44],
2016
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External
validation
sample
size

External
validation

Type of modelVariable
selection
method

Overall
sample
size, n

Training
set sam-
ples, n/N
(%)

Positive
samples,
n/N (%)

ChemotherapySample
source

CountryStudy,
year

1512SVMUnivariate
analysis

251100/251
(39.8)

43/100
(43)

Platinum or
taxane-based
chemotherapy

Tongji
Hospital
and Hubei
Cancer
Hospital

ChinaSun et al
[45],
2016

751RF and COXUnivariate
analysis

305230/305
(75.4)

161/230
(70)

Platinum-
based combi-
nation
chemotherapy

TCGA or
GEO

ChinaChen et
al [46],
2022

3081LRLASSO797489/797
(61.4)

287/489
(58.7)

Platinum-
based combi-
nation
chemotherapy

TCGA or
GEO

ChinaLi et al
[47],
2022

3371LR—483146/483
(30.2)

—Platinum-
based combi-
nation
chemotherapy

TCGA or
GEO

ChinaZhao et al
[48],
2021

441RF—5814/58 (24)7/14 (50)Platinum-
based combi-
nation
chemotherapy

TCGA or
GEO

ItalyButtarelli
et al [49],
2022

—1RF, Elastic Nety,

PAMz, Diagonal
Discriminant
Analysis, partial
least squares–LR,
penalized LR,
partial least
squares, and par-
tial least
squares–RF

Multivari-
ate analysis

—450/450
(100)

292/450
(64.9)

Platinum-
based combi-
nation
chemotherapy

NCIw and

NHGRIx

AmericaGonzalez
Bosquet
et al [50],
2016

—1NB, generalized
linear model, LR,
Fast Large Mar-
gin, deep learn-
ing, DT, RF, Gra-
dient Boosting
Tree, and SVM

——174/174
(100)

77/174
(44)

Platinum or
paclitaxel-
based treat-
ment

Shengjing
Hospital of
China
Medical
University

ChinaGong et
al [51],
2021

——LRUnivariate
and multi-
variate
analysis

—320/320
(100)

95/320
(29)

Platinum-
based combi-
nation
chemotherapy

TCGAChinaSun and
Yang
[52],
2020

J Med Internet Res 2024 | vol. 26 | e48527 | p. 6https://www.jmir.org/2024/1/e48527
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


External
validation
sample
size

External
validation

Type of modelVariable
selection
method

Overall
sample
size, n

Training
set sam-
ples, n/N
(%)

Positive
samples,
n/N (%)

ChemotherapySample
source

CountryStudy,
year

311Convolutional
neural network,
principal compo-
nent analysis, and
SVM

—9362/93 (66)50/62
(80)

Platinum-
based combi-
nation
chemotherapy

The Sun
Yat-sen
Memorial
Hospital

ChinaLei et al
[53],
2022

aGDSC: Genomics of Drug Sensitivity in Cancer.
bTCGA: The Cancer Genome Atlas.
cGEO: Gene Expression Omnibus.
dMissing data or not applicable.
eSVM: support vector machine.
fLR: logistic regression.
gKNN: k-nearest neighbor.
hDT: decision tree.
iAdaBoost: Adaptive Boosting.
jGBM: Gradient Boosting Machine.
kXGBoost: Extreme Gradient Boosting.
lRF: random forest.
mDNN: deep neural network.
nCOX: Cox Proportional Hazards Regression and Log-Rank Tests.
oANN: artificial neural network.
pSPC: supervised principal component.
qLASSO: Least Absolute Shrinkage and Selection Operator.
rCPTAC: Clinical Proteomic Tumor Analysis Consortium.
sAlexNet: Alexandria Network.
tGoogLeNet: Google’s Network.
uVGGNet: Visual Geometry Group Network.
vNB: naive Bayes.
wNCI: National Cancer Institute.
xNHGRI: National Human Genome Research Institute.
yElastic Net: Elastic Net Regularization.
zPAM: Prediction Analysis of Microarrays.

Quality Assessment of Included Studies Using
PROBAST
PROBAST was used to evaluate the risk of bias in eligible
articles that constituted or externally validated predictive
models. Figure 2 summarizes the risk of bias in the 39 predictive
models. Overall, 2 models had a low risk of bias in research

participants, 2 models had a low risk of bias in predictors, 4
models had a low risk of bias in outcomes, and none had a low
risk of bias in statistical analysis (Multimedia Appendix 3).
Some models were at a high risk of bias, suggesting that their
real predictive performance may be worse than that previously
reported. Therefore, we are reasonably concerned that these
models may be unreliable when used by others.
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Figure 2. Risk of bias assessment for all eligible studies.

Model Performance Evaluation
Discrimination and calibration are the most commonly used
indicators for assessing the prediction model performance.
Discrimination is usually evaluated by the area under the
receiver operating characteristic curve, namely the C-index,
which is between 0.5 and 1. A higher C-index indicates better
discrimination in the prediction model. In general, a random
effects model was used for the meta-analysis of C-index in 39
predictive models (XGBoost, LR, Least Absolute Shrinkage
and Selection Operator [LASSO], SVM, random forest,
convolutional neural networks, artificial neural networks,
Prediction Analysis of Microarrays, Diagonal Discriminant
Analysis, Penalized Logistic Regression, partial least squares,
and supervised principal components method). The training
cohort reported C-index in 39 predictive models, with a pooled
value of 0.806 (95% CI 0.767-0.846); the validation cohort
reported C-index in 12 predictive models, with a pooled value
of 0.831 (95% CI 0.768-0.895). We conducted subgroup
analyses according to the machine learning model type,
histological type of ovarian cancer, and whether there was
residual tumor after surgery. In terms of the subgroup analysis
of model types, the C-index for the models in the training set
was as follows—XGBoost: 0.861 (95% CI 0.808-0.914), LR:
0.816 (95% CI 0.775-0.858), SVM: 0.942 (95% CI 0.897-0.988),
and ANN: 0.705 (95% CI 0.615-0.796); the C-index for the
models in the test set were LR: 0.821 (95% CI 0.767-0.876),

LASSO: 0.808 (95% CI 0.723-0.893), SVM: 0.879 (95% CI
0.808-0.949), and random forest: 0.909 (95% CI 0.868-0.950).
With regard to the subgroup analysis of pathological types, the
C-index in the training cohort was serous adenocarcinoma
(0.751, 95% CI 0.682-0.820), high-grade serous ovarian cancers
(0.837, 95% CI 0.780-0.894), and unclear (0.800, 95% CI
0.749-0.852); the C-index in the test set was high-grade serous
ovarian cancers (0.786, 95% CI 0.679-0.893) and unclear (0.916,
95% CI 0.875-0.958). Meanwhile, in the subgroup analysis of
residual tumor, the C-index for residual tumor in the training
cohort was 0.767 (95% CI 0.732-0.803) and the C-index for
nonresidual tumor was 0.811 (95% CI 0.770-0.852). In the test
set, the C-index for residual tumor was 0.719 (95% CI
0.638-0.801) and the C-index for nonresidual tumor was 0.889
(95% CI 0.835-0.943). The forest plot for the subgroup analysis
is shown in Figure 3. Table 2 presents the meta-analysis results
of the C-index. High heterogeneity was identified among these

studies (I2=97.3%; P≤.001), probably because of the varied
machine learning methods and variables used in these studies.
Furthermore, a meta-analysis of the sensitivity and specificity
of the 22 predictive models was performed. The pooled
sensitivity was 0.890 (95% CI 0.800-0.950) and the pooled
specificity was 0.790 (95% CI 0.720-0.840) in the training set
(Figure 4) [35-37,39,42,46,47,50,52,53]. In the test set, the
pooled sensitivity was 0.920 (95% CI 0.810-0.970) and the
pooled specificity was 0.910 (95% CI 0.760-0.970; Figure 5)
[42,45-48,51,53].
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Figure 3. Forest plot of subgroup analysis. ANN: artificial neural network; CNN: convolutional neural network; DDA: Diagonal Discriminant Analysis;
HGSOC: high-grade serous ovarian cancer; LASSO: Least Absolute Shrinkage and Selection Operator; LR: logistic regression; PAM: Prediction
Analysis of Microarrays; PLR: penalized logistic regression; PLS: partial least squares; RF: random forest; SPC: supervised principal component; SVM:
support vector machine; XGBoost: Extreme Gradient Boosting.
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Table 2. Meta-analysis results of predicting platinum chemotherapy responses in ovarian cancer.

Test setTraining set

C-index (95% CI)Number (n=12), n (%)C-index (95% CI)Number (n=39), n (%)

Model

——b0.861 (0.808-0.914)4 (10)XGBoosta

0.821 (0.767-0.876)2 (17)0.816 (0.775-0.858)16 (41)LRc

0.808 (0.723-0.893)1 (8)0.734 (0.476-0.993)2 (5)LASSOd

0.879 (0.808-0.949)4 (33)0.942 (0.897-0.988)4 (10)SVMe

0.909 (0.868-0.950)1 (8)0.740 (0.721-0.759)2 (5)RFf

0.914 (0.752-1.000)2 (17)0.935 (0.849-1.000)2 (5)CNNg

——0.705 (0.615-0.796)3 (8)ANNh

——0.640 (0.580-0.700)1 (3)PAMi

——0.740 (0.705-0.775)1 (3)DDAj

——0.790 (0.710-0.870)1 (3)PLRk

——0.710 (0.655-0.765)1 (3)PLSl

0.659 (0.573-0.745)2 (17)0.802 (0.752-0.852)2 (5)SPCm

Histological type

——0.751 (0.682-0.820)4 (10)Serous

0.786 (0.679-0.893)8 (67)0.837 (0.780-0.894)10 (26)HGSOCn

0.916 (0.875-0.958)4 (33)0.800 (0.749-0.852)25 (64)Unclear

Residual tumor

0.719 (0.638-0.801)4 (33)0.767 (0.732-0.803)4 (10)Yes

0.889 (0.835-0.943)8 (67)0.811 (0.770-0.852)35 (90)No

0.831 (0.768-0.895)12 (100)0.806 (0.767-0.846)39 (100)Overall

aXGBoost: Extreme Gradient Boosting.
bMissing data.
cLR: logistic regression.
dLASSO: Least Absolute Shrinkage and Selection Operator.
eSVM: support vector machine.
fRF: random forest.
gCNN: convolutional neural network.
hANN: artificial neural network.
iPAM: Prediction Analysis of Microarrays.
jDDA: Diagonal Discriminant Analysis.
kPLR: penalized logistic regression.
lPLS: partial least squares.
mSPC: supervised principal component.
nHGSOC: high-grade serous ovarian cancer.
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Figure 4. Meta-analysis of sensitivity and specificity—the training set. The repeated authors in the literature are due to the construction of multiple
machine learning models. CNN: convolutional neural network; LR: logistic regression; RF: random forest; SVM: support vector machine; XGBoost:
Extreme Gradient Boosting.
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Figure 5. Meta-analysis of sensitivity and specificity—the test set. The repeated authors in the literature are due to the construction of multiple machine
learning models. CNN: convolutional neural network; LR: logistic regression; RF: random forest; SVM: support vector machine; XGBoost: Extreme
Gradient Boosting.

Discussion

Principal Findings
This study conducted a meta-analysis of machine learning
models for predicting responses to platinum chemotherapy in
patients with ovarian cancer. It delves into the performance,
reliability, and influencing factors of models. To our knowledge,
this is the first systematic review and meta-analysis on the
application of machine learning in predicting responses to
platinum-based chemotherapy in patients with ovarian cancer.
The search initially yielded 1749 studies, and after applying
inclusion criteria, 19 studies (accounting for 1.09% of the total)
were ultimately included. This research encompasses 12
machine learning models, such as XGBoost, LR, LASSO, and
SVM, built based on various hospital or genomics data sources.
The analysis results indicated that these models performed
effectively in distinguishing patients’ responses to platinum
chemotherapy, achieving C-indices of 0.806 and 0.831 in the
training and validation sets, respectively. The model
demonstrated high overall sensitivity and specificity,
underscoring its accuracy and reliability in predicting platinum
drug response in ovarian cancer. Subgroup analysis revealed
the influence of model type, pathology type, and residual tumor
on the prediction performance. SVM stood out on both the
training and validation sets because it outperformed other
machine learning methods in terms of accuracy and relative

error rate measures [54] and exhibited the ability to identify
subtle patterns in complex data sets [55]. LR is the most
commonly used modeling variable because it can handle not
only binary results but also accommodate continuous or
categorical predictor variables. This comprehensive approach
considers the impact of multiple factors on the results,
effectively controls potential confounding factors, and reduces
bias [56]. As a result, LR is widely used in machine learning
modeling within various fields. The analysis of residual tumor
revealed that the model exhibited different performance in
predicting patients with or without residual tumor. Compared
with nonresidual tumor, the predictive performance of machine
learning for residual tumor was more significant, suggesting
that residual tumor may be a crucial factor influencing ovarian
cancer patients’ response to platinum therapy.

Most published meta-analyses on the application of machine
learning in ovarian cancer focus on the diagnosis and prediction
of ovarian cancer; however, there are some differences in
specific research methods, evaluation tools, and presentation
of results. Huang et al [57] reviewed the application of computed
tomography and magnetic resonance imaging radiomics in
ovarian cancer, achieving promising results in differential
diagnosis and prognosis prediction. Other studies [58,59] have
summarized artificial intelligence methods for gynecological
malignant tumors, emphasizing that variable selection, machine
learning methods, and end point selection can all influence
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model performance. Xu et al [60] systematically reviewed
studies that applied artificial intelligence to diagnose ovarian
cancer based on medical images and highlighted the good
performance of artificial intelligence algorithms in ovarian
cancer diagnosis. Koch et al [61] evaluated the accuracy of
computer-aided diagnosis, encompassing computer-aided
diagnosis for ultrasound, computed tomography, and magnetic
resonance imaging, to predict the likelihood of malignancy in
ovarian tumors. Given that it is challenging to predict the
response of patients with ovarian cancer to platinum therapy
before the completion of chemotherapy, accurate prediction of
this response is crucial for devising effective treatment plans.
This review focuses on the performance of machine learning in
predicting responses to platinum-based chemotherapy in patients
with ovarian cancer. This not only provides valuable information
for clinical prediction but also addresses a long-standing
challenge in the development of noninvasive methods for
predicting chemotherapy response in patients with ovarian
cancer. Feature selection emerges as a critical aspect influencing
model performance in this context. Previous studies [41,62]
have reported that next-generation sequencing technology can
be used to explore correlations between intrinsic genomic
features and the response to platinum-based chemotherapy.
Radiomics is another approach. A recent study demonstrated
that a predictive model based on the combination of radiomics
with single nucleotide polymorphisms of Human Sulfatase 1
could predict platinum resistance in ovarian cancer treatment
[42]. Previous research [43] has shown that combining
whole-slide histopathology scanners and high-throughput omics
analysis with cutting-edge machine learning algorithms can
help reveal correlations between microscopic tumor cell
morphology and molecular pathways. Machine learning models
have shown great promise in linking histopathological patterns
to patient diagnosis and prognosis. Another study [44] used
tumor proteomic features to predict the clinical response to
platinum-based chemotherapy in patients with ovarian cancer.
The findings revealed a close association between tissue
expression levels of 24 proteins and the response to
platinum-based chemotherapy. The variables selected in the 19
included articles spanned from molecular-level factors to clinical
characteristics, medical imaging, and the microbiome, reflecting
the prevailing trend of considering multiple levels and aspects
in cancer research. This comprehensive approach facilitates a
more in-depth understanding of cancer pathogenesis and
predictive factors.

Strengths and Limitations

Strengths
The most noteworthy aspect of our analysis is that it provides
a comprehensive map of research on prognostic prediction
models for patients with ovarian cancer. We gathered all
available predictive models for potential clinical outcomes of
platinum chemotherapy responses in patients with ovarian
cancer. The characteristics of these models were elucidated in
detail. Furthermore, this study critically evaluated the predictive
models for platinum chemotherapy response in patients with
ovarian cancer using the PROBAST tool. Moreover, a
meta-analysis of the C-index using multiple externally verified
predictive models was performed. There is currently no

meta-analysis that summarizes research on machine learning
prediction models for platinum chemotherapy response in
ovarian cancer. Hence, this study aimed to explore its
performance in prediction. It is critical to systematically review
published studies on machine learning and provide guidance
for future research. This helps to establish personalized treatment
protocols and estimate prognosis by elucidating intrinsic tumor
features such as platinum sensitivity in the initial therapy.

Limitations
However, several limitations of the current investigation must
be considered. First, the meta-analysis of the C-index had a high
degree of heterogeneity, probably because of the various
machine learning methods, predictors, and parameters used in
model construction, as well as differences in clinical settings,
patient characteristics, and research time. At the same time, we
should note that the risk of bias assessment of the predictive
model is a rigorous tool for the construction of original models;
for most of the original studies, the results assessed by this tool
have a high risk of bias. In addition, our meta-analysis had
several methodological problems in model development, which
were reflected in the risk of bias. The PROBAST assessment
suggested that some studies had a high or unclear risk of bias
in 4 domains: participants, predictors, outcomes, and statistical
analysis. Furthermore, the predictive value of machine learning
for different diseases may vary. The essence of machine learning
is efficient predictors. When the same machine learning model
includes more efficient predictors, its predictive value will be
significantly improved. This may result in heterogeneity between
models. For constructing machine learning, especially for rare
events, some studies face challenges in acquiring large data
sets, making it difficult to establish an independent validation
set. However, the importance of the training process cannot be
overlooked as cross-validation may be used during training,
although it cannot fully replace an independent validation set.
When conducting meta-analysis, it is essential to consider
whether the model is overfitting, necessitating attention to the
results of the training set. Consequently, our meta-analysis
includes studies without independent validation cohorts for a
comprehensive evaluation. The most important aspect is the
lack of original research with large multicenter samples in the
modeling process. Therefore, more high-quality, multicenter,
large-scale studies are required. Despite some limitations in this
study, we have compiled a comprehensive summary of the
current models to provide a reference for the development of
more broadly applicable clinical tools in the future. Looking at
it this way, it is necessary to conduct a meta-analysis. Although
there are frequent disagreements about the predictive value of
different studies, this is partially dependent on the selection of
the predictive model, which is the most influential factor
affecting predictive performance.

Conclusions
Machine learning has excellent predictive performance in
predicting response to platinum chemotherapy in patients with
ovarian cancer. At the same time, we found that SVM has the
best prediction performance among the existing prediction
models. Machine learning can be used as a prediction tool for
platinum response in ovarian cancer. On the basis of this
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research, a large-scale, multicenter, and multiethnic prediction
tool can be developed in the future for predicting platinum-based
chemotherapy response in patients with ovarian cancer to

advance precision chemotherapy for ovarian cancer
management.
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