Published on in Vol 24 , No 3 (2022) :March

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/26634, first published .
Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis

Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis

Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis

Journals

  1. Huang J, Yeung A, Armstrong D, Battarbee A, Cuadros J, Espinoza J, Kleinberg S, Mathioudakis N, Swerdlow M, Klonoff D. Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes. Journal of Diabetes Science and Technology 2023;17(1):224 View
  2. Jader R, Aminifar S, Ejbali R. Predictive Model for Diagnosis of Gestational Diabetes in the Kurdistan Region by a Combination of Clustering and Classification Algorithms: An Ensemble Approach. Applied Computational Intelligence and Soft Computing 2022;2022:1 View
  3. Qin Y, Wu J, Xiao W, Wang K, Huang A, Liu B, Yu J, Li C, Yu F, Ren Z. Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type. International Journal of Environmental Research and Public Health 2022;19(22):15027 View
  4. Prudencio C, Nunes S, Pinheiro F, Filho C, Antônio F, de Aquino Nava G, Rudge M, Barbosa A, Calderon I, Souza F, Berghmans B, de Bie R, Thabane L, Junginger B, Graeff C, Magalhães C, Costa R, Lima S, Kron-Rodrigues M, Felisbino S, Barbosa W, Campos F, Bossolan G, Corrente J, Nunes H, Abbade J, Rossignoli P, Pedroni C, Atallah A, Di Bella Z, Uchoa S, Hungaro M, Mareco E, Sakalem M, Martinho N, Hallur L, Reyes D, Alves F, Marcondes J, Quiroz S, Pascon T, Catinelli B, Reis F, Oliveira R, Barneze S, Enriquez E, Takano L, Carr A, Magyori A, Iamundo L, Carvalho C, Jacomin M, Avramidis R, Silva A, Orlandi M, Dangió T, Bassin H, Melo J, Takemoto M, Menezes M, Caldeirão T, Santos N, Lourenço I, de Sá Marostica J, Caruso I, Rasmussen L, Garcia G, Pascon C, Bussaneli D, Nogueira V, Rudge C, Piculo F, Prata G, Barbosa V. Relaxin-2 during pregnancy according to glycemia, continence status, and pelvic floor muscle function. International Urogynecology Journal 2022;33(11):3203 View
  5. Nichols E, Pathak H, Bgeginski R, Mottola M, Giroux I, Van Lieshout R, Mohsenzadeh Y, Duerden E, Ab Wahab M. Machine learning-based predictive modeling of resilience to stressors in pregnant women during COVID-19: A prospective cohort study. PLOS ONE 2022;17(8):e0272862 View
  6. Akano T, James C. An assessment of ensemble learning approaches and single-based machine learning algorithms for the characterization of undersaturated oil viscosity. Beni-Suef University Journal of Basic and Applied Sciences 2022;11(1) View
  7. Huang Q, Hu Y, Wang C, Huang J, Shen M, Ren L. Clinical First-Trimester Prediction Models for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Biological Research For Nursing 2023;25(2):185 View