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Abstract

Background: Gestational diabetes mellitus (GDM) is a common endocrine metabolic disease, involving a carbohydrate
intolerance of variable severity during pregnancy. The incidence of GDM-related complications and adverse pregnancy outcomes
has declined, in part, due to early screening. Machine learning (ML) models are increasingly used to identify risk factors and
enable the early prediction of GDM.

Objective: The aim of this study was to perform a meta-analysis and comparison of published prognostic models for predicting
the risk of GDM and identify predictors applicable to the models.

Methods: Four reliable electronic databases were searched for studies that developed ML prediction models for GDM in the
general population instead of among high-risk groups only. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST)
was used to assess the risk of bias of the ML models. The Meta-DiSc software program (version 1.4) was used to perform the
meta-analysis and determination of heterogeneity. To limit the influence of heterogeneity, we also performed sensitivity analyses,
a meta-regression, and subgroup analysis.

Results: A total of 25 studies that included women older than 18 years without a history of vital disease were analyzed. The
pooled area under the receiver operating characteristic curve (AUROC) for ML models predicting GDM was 0.8492; the pooled

sensitivity was 0.69 (95% CI 0.68-0.69; P<.001; I2=99.6%) and the pooled specificity was 0.75 (95% CI 0.75-0.75; P<.001;

I2=100%). As one of the most commonly employed ML methods, logistic regression achieved an overall pooled AUROC of
0.8151, while non–logistic regression models performed better, with an overall pooled AUROC of 0.8891. Additionally, maternal
age, family history of diabetes, BMI, and fasting blood glucose were the four most commonly used features of models established
by the various feature selection methods.

Conclusions: Compared to current screening strategies, ML methods are attractive for predicting GDM. To expand their use,
the importance of quality assessments and unified diagnostic criteria should be further emphasized.

(J Med Internet Res 2022;24(3):e26634) doi: 10.2196/26634
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Introduction

According to the latest Global Diabetes Map (9th edition)
released by the International Diabetes Federation, the number
of patients with diabetes during pregnancy is increasing globally,
with about 20.4 million (15.8%) women suffering from
hyperglycemia; among them, 83.6% of cases were due to
gestational diabetes mellitus (GDM) [1]. GDM, a common
metabolic disease, is usually a transient disorder during
pregnancy that resolves at delivery. Pregnant women with GDM
are at greater risk of adverse pregnancy outcomes that threaten
a normal birth. An oral glucose tolerance test (OGTT) is
typically recommended to screen for GDM between the 24th
and 28th weeks of gestation. Physicians usually measure the
fasting plasma glucose concentration 1 to 2 hours after the
patient ingests glucose [2]. The American Diabetes Association
recommends that women be screened at the first prenatal
examination to aid with the early identification of hyperglycemia
risk. Nonetheless, GDM screening recommendations are
controversial among international organizations regarding four
aspects: (1) universal versus selective screening, (2) early
pregnancy screening (ie, before pregnancy or at the first prenatal
visit versus screening at 24-28 gestational weeks), (3) a one-step
versus two-step approach, and (4) inconsistent diagnostic criteria
(Table S1 in Multimedia Appendix 1) [3].

Machine learning (ML) methods have become favorable tools
for disease prevention and management. For instance, the
multivariate logistic regression (LR) model is a recognized ML
algorithm for predicting diabetes and its complications.
Furthermore, other methods, such as random forest (RF),
extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM), are also applied to
diabetes-related problems. A growing number of studies have
used such methods to identify risk factors of GDM and construct
early prediction models for the disease [4,5]. ML presents a
powerful tool for analyzing large amounts of diverse health care
data and augmenting doctors’ capabilities. However, ML has
limitations that can lead to inaccurate predictions in some
clinical scenarios, and the significance of its assessment was
highlighted in a real-world study [6]. The US Food and Drug
Administration (FDA) has issued guidance on software as a
medical device that explains risk stratification and the analytical
and clinical validation required of artificial intelligence (AI)
tools in health care. IDx-DR, the first FDA-approved ML
application to help make screening decisions, achieved high
sensitivity (87%) and specificity (91%) for diabetic retinopathy
in primary care clinics [7]. Most of the published prognostic
models for GDM also showed acceptable discrimination and
calibration [8], but they vary in quality and perform
inconsistently.

Few systematic analyses of ML models for GDM are currently
available. Here, we conducted a thorough meta-analysis of the
predictive value of ML in GDM using a quality evaluation by
the Prediction Model Risk of Bias Assessment Tool
(PROBAST) and compared ML models with universal and
selective screening methods. Essentially, we wondered if ML
could be a new GDM screening option.

Methods

Research Design
This study was conducted according to PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines (Table S2 in Multimedia Appendix 1) [9].

Search Methods
The PubMed, Web of Science, IEEE Xplore, and China National
Knowledge Infrastructure databases were searched for articles
published in English or Chinese between August 2019 and
October 2020. We built up the search strategy according to the
PICO (population, intervention, control, and outcomes)
principle; for our study, “P” represents GDM populations, “I”
represents ML methods as interventions, “C” represents gold
standards as controls, and “O” represents the outcomes of
prediction and diagnosis, such as sensitivity, specificity, and
accuracy (Table S3 in Multimedia Appendix 1). The details of
the search keywords are listed in Textbox S1 in Multimedia
Appendix 1. Additionally, the reference list of each identified
study was manually searched to identify any additional studies.
NoteExpress 3.2 (Aegean) [10] and EndNote X7 (Clarivate)
[11] were employed to manage the studies and remove duplicate
items.

Inclusion and Exclusion Criteria
All studies included had to meet the following criteria: (1)
published in English or Chinese; (2) included pregnant women
from the general population, with a clear definition for GDM
diagnosis; (3) included ML models for GDM prediction, with
a clear description of the ML models; and (4) showed the
performance of ML models, including sufficient data to enable
the inference of sensitivity and specificity.

Articles in other languages, other types of articles (eg, reports
and reviews), or those that used other measures for GDM
detection were excluded. Four investigators (LY, WH, YW,
and CG) participated in the literature screening to review all
the studies that met the inclusion criteria. Each chosen article
was screened at least twice, and disagreements were resolved
by the reviewer (ZZ). Studies providing the most detailed
information of variables and outcome indicators were kept for
reference.

Data Extraction
Data extraction was performed independently by two
investigators (LY and LZ) according to the existing literature
and the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
standardized protocol [12]. A total of 25 studies were ultimately
selected for the analysis. The following data were extracted
from each study: (1) demographic information (ie, the country
in which the data were gathered, the setting, the data source,
the study design, the prediction temporality, and the outcome
definition); (2) the data division method, the feature selection
algorithms, the features of the model training, the ML prediction
model type, and the model validation and application; (3)
prediction outcomes, including accuracy, sensitivity, specificity,
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and area under the receiver operating characteristic curve
(AUROC); and (4) funding and ethics approval.

Quality and Bias Assessments
The PROBAST [13], which includes a total of 20 signaling
questions in four domains (ie, participants, predictors, outcome,
and analysis), was used as a tool for assessing the risk of bias
and applicability of each included study.

Statistical Analysis
The performance of each ML model was described using the
primary outcome measures of discrimination and calibration.
Model discrimination or concordance index (C-index) is similar
to the AUROC [14] and indicates its diagnostic or prognostic
discrimination ability as none (AUROC ≤0.6), poor (AUROC
>0.6 to 0.7), fair (AUROC >0.7 to 0.8), good (AUROC >0.8 to
0.9), or optimum (AUROC >0.9 to 1). Model calibration is a
metric of goodness of fit that assesses the agreement between
observed and predicted outcomes and reflects the stability of
the model via calibration plots. The diagnostic odds ratio (DOR)
was also calculated via the following equation:

DOR = PLR / NLR (1)

where PLR is the positive likelihood ratio and NLR is the
negative likelihood ratio. The PLR and NLR were calculated
to express how frequently the model predicted GDM among
the individuals with GDM versus among those without GDM
using the following equations:

PLR = Sensitivity / (1 − Specificity) (2)

NLR = (1 – Sensitivity) / Specificity (3)

In this meta-analysis, the Meta-DiSc software program (version
1.4) [15] was used to calculate the pooled estimates of AUROC,
sensitivity, specificity, PLR, NLR, and DOR. It was used to
summarize the data from the included studies and graphically

investigate the homogeneity among the studies. The I2 test was
used to assess the statistical heterogeneity among the included

studies. An I2 value of more than 75% indicated high
heterogeneity among the studies [16]. The analysis of the
included studies was divided into primary and subgroup analyses
to judge the performances of the ML methods in predicting
GDM in different clinical scenarios. Sensitivity analysis,
subgroup analyses, and a meta-regression were also conducted
to gain insight into potential sources of interstudy heterogeneity
due to selector or inclusion criteria bias. The abilities of the
different ML algorithms (eg, LR, Bayesian model, TreeNet,
and GA-CatBoost [genetic algorithm category boosting]) for
predicting GDM are discussed in the Subgroup Analysis section.
The four predictive models with the highest and the lowest
values were excluded from the sensitivity analysis to assess the
impact of outliers on pooled sensitivity and specificity.

Results

Study Selection
A total of 27,071 studies were initially identified; of those, 1256
(4.6%) that discussed GDM were subjected to abstract screening.
A total of 67 studies were subjected to full-text review; of those,
25 (37%) were included in the meta-analysis [17-33]. Figure 1
shows the PRISMA flow diagram of the study selection process.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection. CNKI: China National
Knowledge Infrastructure.

Study Characteristics
The articles’ years of publication ranged from 2004 to 2020;
10 out of 25 (40%) were published in 2020 (Figure S1 in
Multimedia Appendix 1). All studies included women older
than 18 years without a history of heart or cerebrovascular
disease or vital organ dysfunction. Out of 25 studies, 9 (36%)
included patients with a history of GDM, while other studies
excluded those cases with a history of GDM (Tables S4-S6 in
Multimedia Appendix 1). The source data for ML training were
mostly obtained from medical centers and maternity hospitals;
some also included self-administered questionnaires. Out of 25
studies, 9 (36%) were conducted using data from a
population-based prospective cohort or multicenter study. The
sample size of the included studies varied from 134 to 66,687
participants.

Feature selection is an important step for ML training. Xiong
et al [19] developed a prediction model for GDM risk in the
first 19 weeks of gestation with several hepatic, renal, and
coagulation function measures; they observed that a cutoff of
prothrombin time and activated partial thromboplastin time
could reliably predict GDM with a sensitivity of 88.3%, a
specificity of 99.47%, and an AUROC of 94.2%. Maternal age,
family history of diabetes, BMI, and fasting blood glucose were
the four most commonly used features of the established models,
whereas pregnancy-associated plasma protein A, leptin,
lipocalin-2, adiponectin, weight gain, and soft drink intake
during pregnancy were used in only one or two models each.
Table 1 [17-41] summarizes the most frequent features included
in the prognostic models.
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Table 1. The most frequent factors included in risk prediction models for gestational diabetes mellitus.

Factors included in modelsStudy first author, year

hsCRPi

(n=3)
Height
(n=3)

SBPh

(n=3)
HbA1c

g

(n=4)
TGf

(n=5)
Ethnicity
(n=6)

HDe

(n=8)
PBMId

(n=8)
FPGc

(n=11)
BMI
(n=12)

FHDb

(n=14)
MAa

(n=19)

✓✓✓✓✓jGao, 2020 [21]

✓✓✓Liu, 2020 [17]

✓✓✓Miao, 2020 [28]

✓✓✓✓Tan, 2020 [41]

✓✓✓✓Wu, 2020 [18]

Xiong, 2020 [19]

✓✓✓✓✓✓✓Ye, 2020 [20]

✓✓✓✓✓✓✓✓Zhang, 2020 [39]

✓✓✓Snyder, 2020 [40]

✓✓✓Cui, 2019 [25]

✓✓✓✓Zheng, 2019 [24]

✓✓Nombo, 2018 [26]

✓✓✓✓✓Sweeting, 2018 [27]

✓✓✓✓✓✓Xiao, 2018 [38]

✓✓✓✓Huang, 2017 [23]

✓✓✓✓✓Wu, 2017 [22]

✓✓✓✓✓Gabbay-Benziv, 2015
[30]

✓✓✓✓✓✓✓Thériault, 2015 [29]

✓Eleftheriades, 2014 [31]

✓✓✓Pintaudi, 2013 [32]

✓✓Savona-Ventura, 2013
[33]

✓✓Tran, 2013 [34]

✓✓✓✓Teede, 2011 [35]

✓✓✓✓Vanleeuwen, 2009 [36]

✓✓✓Caliskan, 2004 [37]

aMA: maternal age.
bFHD: family history of diabetes.
cFPG: fasting plasma glucose.
dPBMI: prepregnancy BMI.
eHD: history of diabetes.
fTG: triglyceride.
gHbA1c: hemoglobin A1c.
hSBP: systolic blood pressure.
ihsCRP: high-sensitivity C-reaction protein.
jA checkmark (✓) indicates that the factor was included.

The LR model was the most universally used model in the 25
studies (n=17, 68%) for predicting GDM risk, while 5 (20%)
studies assessed the performance of other ML methods (ie,
GA-CatBoost, XGBoost, Bayesian model, TreeNet,
gradient-boosting decision tree [GBDT], adaptive boosting
[AdaBoost], LightGBM, Vote, and RF). For measuring deep

learning performance, AUROC and the Youden index were
most commonly used. AUROC was used in studies that did not
provide the C-index. Out of 25 studies, 2 (8%) did not report
metrics of model discrimination. Of the 25 studies, only 7 (28%)
presented calibration measures. Internal validation was
performed in 13 studies (52%) using random split or k-fold
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cross-validation and bootstrapping. Only 4 studies out of 25
(16%) performed external validation.

Quality Assessment
Items from the PROBAST checklists (Multimedia Appendix
2) were used to assess the risk of bias and applicability of the
prognostic prediction model studies. According to the criteria,
the biases of participants in 4 out of 25 (16%) studies
[30,31,33,36] were moderate, mainly due to debatable criteria,
while biases in the other studies were low. Out of 25 studies,
24 (96%) study groups had a low bias of predictors, while 1
(4%) [32] had a moderate risk of bias because the prediction
assessment was created with knowledge of the outcome data.
The bias of outcome in 6 (24%) studies [22,30,33,35-37] was
moderate due to the diagnostic criteria, while the others were
low. A total of 8 (32%) groups had a moderate bias of analysis
[21,23,27,31-33,36,37] and 1 (4%) [30] showed a high risk of
bias due to an unreasonable number of participants with

outcomes. The overall bias rating of 10 (40%) groups
[21-23,27,30,32,33,35-37] was moderate. Overall concerns
regarding the applicability rating of 7 (28%) studies
[21-23,27,29,32,33] were moderate because of excessive
features in models making it difficult to collect data in actual
use, whereas others were low (Table S7 in Multimedia Appendix
1).

Performance of ML Models for GDM Prediction
The overall pooled AUROC for ML models for predicting GDM
was 0.8492 (Figure 2). Additional values were as follows:

sensitivity 0.69 (95% CI 0.68-0.69; P<.001; I2=99.6%; Figure

3); specificity 0.75 (95% CI 0.75-0.75; P<.001; I2=100%; Figure

4); DOR 13.78 (95% CI 9.53-19.94; P<.001; I2=99.1%); PLR

4.02 (95% CI 3.13-5.17; P<.001; I2=99.6%); and NLR 0.31

(95% CI 0.26-0.38; P<.001; I2=98.7%).

Figure 2. The overall pooled area under the receiver operating characteristic curve (AUROC) of machine learning models for gestational diabetes
mellitus prediction. Q*: the sensitivity at the intersection of the SROC curve and the straight line (sensitivity=specificity); SROC: summary receiver
operating characteristic.
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Figure 3. The overall pooled sensitivity of machine learning models for gestational diabetes mellitus prediction. First authors for each study are listed
along the y-axis. The vertical red dotted lines are the 95% CIs of the pooled sensitivity. BYS: Bayesian; DNN: deep neural network; GA-CB: GA-CatBoost
(genetic algorithm category boosting); GBDT: gradient-boosting decision tree; KNN: k-nearest neighbors; LGB: LightGBM (light gradient boosting
machine); LR: logistic regression; SVM: support vector machine; Tnet: TreeNet; XGB: XGBoost (extreme gradient boosting).

Figure 4. The overall pooled specificity of machine learning for gestational diabetes mellitus prediction. First authors for each study are listed along
the y-axis. The vertical red dotted line is the 95% CI of the pooled specificity. BYS: Bayesian; DNN: deep neural network; GA-CB: GA-CatBoost
(genetic algorithm category boosting); GBDT: gradient-boosting decision tree; KNN: k-nearest neighbors; LGB: LightGBM (light gradient boosting
machine); LR: logistic regression; SVM: support vector machine; Tnet: TreeNet; XGB: XGBoost (extreme gradient boosting).

Sensitivity Analysis
After the exclusion of the 4 (16%) models with the lowest and
highest sensitivity and specificity, the random effects
meta-analysis produced estimated pooled sensitivity of 0.73

(95% CI 0.72-0.74; P<.001; I2=98.3%) and pooled specificity

of 0.73 (95% CI 0.72-0.73; P<.001; I2=99.8%). Therefore, the
pooled estimates were deemed insensitive to the exclusion of
outliers (Figure S2 in Multimedia Appendix 1).

Subgroup Analysis
The comparison of the GDM prediction performance results is
shown in Table 2; forest plots are shown in Figures S3-S8 in
Multimedia Appendix 1.

In this study, 19 prediction models were established using the
LR models [17,18,20-23,26-33,35-39], and the overall pooled
AUROC for the LR models for predicting GDM was 0.8151
(Figure 5). The overall pooled AUROC for non-LR models to
predict GDM was 0.8891 (Figure 6), the highest value among
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these subgroups. Further analysis of these non-LR methods
showed that two support vector machine (SVM) models [19,20]
achieved AUROC values of 0.82 and 0.98, respectively (Figure
S9 in Multimedia Appendix 1), while two Bayesian models
[24,34] achieved AUROC values of 0.766 and 0.71, respectively
(Figure S10 in Multimedia Appendix 1). Interestingly, Ye et al
[20] developed eight common ML methods—GBDT, AdaBoost,
LightGBM, LR, Vote, XGBoost, decision tree (DT), and
RF—and two common regression models to predict the
occurrence of GDM with a data set of 822,242 patients. GBDT,

AdaBoost, and LightGBM (AUROC 0.70-0.75) were the top
three models, while DT and RF were the worst models (AUROC
0.5-0.68) in that study. The capabilities of three ML methods
were compared using data from 490 people [21]. The deep
neural network model achieved the highest AUROC of 0.92,
while the SVM and k-nearest neighbors (KNN) models achieved
AUROC values of 0.82 and 0.68, respectively. XGBoost,
LightGBM, GA-CatBoost, and TreeNet were used in 4 out of
25 (16%) studies and achieved AUROC values of 0.742, 0.942,
0.872, and 0.676, respectively [17,19,21,25] (Table 2).

Table 2. The comparison of performance of machine learning models in gestational diabetes mellitus (GDM) prediction applied to different subgroups.

DORd (95% CI)NLRc (95% CI)PLRb (95% CI)
Specificity
(95% CI)

Sensitivity
(95% CI)AUROCa

Models
(N=30), n
(%)Subgroup

13.78 (9.53-19.94)0.31 (0.26-0.38)4.02 (3.13-5.17)0.75 (0.75-0.75)0.69 (0.68-0.69)0.849230 (100)Overall

16.55 (9.52-28.77)0.28 (0.22-0.36)3.89 (2.92-5.19)0.64 (0.64-0.64)0.74 (0.73-0.75)0.866716 (53)0-13 weeks before diagnosis

11.67 (7.59-18.02)0.35 (0.25-0.48)3.90 (2.76-5.53)0.85 (0.84-0.85)0.64 (0.63-0.65)0.836514 (47)14-28 weeks before diagno-
sis

19.82 (11.49-34.13)0.28 (0.18-0.44)5.29 (3.39-8.25)0.85 (0.85-0.86)0.67 (0.66-0.68)0.875911 (37)With GDM history

8.27 (5.14-13.29)0.35 (0.30-0.41)3.12 (2.52-3.86)0.65 (0.64-0.65)0.70 (0.66-0.68)0.833019 (63)Without GDM history

8.73 (5.99-12.73)0.37 (0.32-0.43)3.04 (2.37-3.89)0.67 (0.67-0.67)0.71 (0.70-0.72)0.815119 (63)Logistic regression

31.85 (15.93-63.69)0.24 (0.15-0.38)6.80 (4.45-10.37)0.85 (0.85-0.86)0.66 (0.65-0.67)0.889111 (37)Non–logistic regression

aAUROC: area under receiver operating characteristic curve.
bPLR: positive likelihood ratio.
cNLR: negative likelihood ratio.
dDOR: diagnostic odds ratio.

Figure 5. The overall pooled area under the receiver operating characteristic curve (AUROC) of logistic regression models for gestational diabetes
mellitus prediction. Q*: the sensitivity at the intersection of the SROC curve and the straight line (sensitivity=specificity); SROC: summary receiver
operating characteristic.
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Figure 6. The overall pooled area under the receiver operating characteristic curve (AUROC) of non–logistic regression models for gestational diabetes
mellitus prediction. Q*: the sensitivity at the intersection of the SROC curve and the straight line (sensitivity=specificity); SROC: summary receiver
operating characteristic.

Meta-regression
The meta-regression analysis was conducted due to the high
level of interstudy heterogeneity [42]. Sample size, country
where the data were collected, publication year, ML methods
used, and model quality did not affect diagnostic accuracy
(P=.13). The antilogarithm transformations of the resulting
estimated parameters could be interpreted as a relative DOR of
the corresponding covariate, indicating the change in diagnostic
performance of the test under study per unit increase in the
covariate (Table S8 in Multimedia Appendix 1).

Discussion

Principal Findings
This study was a pilot meta-analysis evaluating the performance
of ML models for predicting GDM. Its overall pooled estimation
of 25 studies showed that ML models achieved high accuracy
in early recognition of GDM patients. ML models could forecast
based on data from 8 to 24 weeks’ gestation. There was even a
model that used prepregnancy features to predict the outcome
up to 28 weeks in advance, suggesting the significance of ML
models for GDM prediction. Compared to the census or existing
screening methods, ML methods have certain advantages.
Universal screening leads to 100% detection for physicians who
usually make decisions based on an OGTT test, which may
place an unnecessary burden on individual women and health
care resources. Current selective screening strategies are based
on a list of risk factors and have fixed sensitivity (±65%) and
specificity (±80%). Although the ML methods do not provide
greater benefit than current available screening strategies, an

advantage is that a preferred trade-off between sensitivity and
specificity can be selected [43]. The choice of statistical method
is more to compute a quantitative measure of existing data than
to predict unknown data in a general and feasible way [44].

According to the subgroup analysis, models created using
non-LR methods achieved the highest AUROC, suggesting that
researchers should test more candidate models. One study aimed
to review and compare the predictive performances of LR and
other ML algorithms for developing or validating a multivariable
prognostic prediction model for pregnancy care; that study also
recommended a reanalysis of existing LR models for several
pregnancy outcomes by comparing them with those algorithms
that apply standard guidelines [45]. Among those non-LR
models, ensemble methods, like LightGBM and GA-CatBoost,
that are composed of multiple weaker models and are
independently trained had a satisfactory result. Variables in the
GBDT model underscored the advantage of identifying nonlinear
relationships. The SVM model also achieved superior outcomes;
that method builds a model that assigns new examples to one
category or the other, making it a nonprobabilistic binary linear
classifier. Methods like KNN, DT, and RF did not perform as
well as the LightGBM and GA-CatBoost methods, which may
be due to the fact that DT classifications are based on a single
condition at the bottom, so small changes can lead to mistakes.
For RF, the high dimension of medical data complicates the
classification and prediction. Similarly, KNN cannot be used
in high-dimensional feature spaces. Some researchers [23] found
that the difference between two methods had no statistical
significance, since LR models are suitable for simple data with
linear relationships between variables and outcomes. Our study
also found that LR models were conducive to achieving more
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stable performance according to the summary receiver operating
characteristic curve. The subgroup of 0 to 13 weeks before
diagnosis achieved the highest pooled sensitivity, while the
subgroup of 14 to 28 weeks before diagnosis achieved the
highest specificity, meaning that ML may assist clinicians
identify more patients in early screening and avoid excessive
misdiagnosis in the second trimester.

The feature selection was also crucial for model performance
and interpretation. Among the 25 studies, maternal age was
used as a feature in 19 studies, as was previously reported and
validated in our study. One of the included studies reported that
the incidence of GDM increases after 25 years of age, the main
reason being that the function of islet β-cells decreases with
age, so the insulin antagonism of older adult pregnant women
is aggravated [46]. Eight models considered GDM history to
be a vital factor for predicting GDM. A DOR value of 21.09
appeared when a GDM history was included as a risk factor for
predicting future GDM. Previous research discovered that
women with GDM were more likely to have a family history
of type 2 diabetes mellitus and a history of GDM, partially due
to overlapping genetic bases between the diseases [18]. The
nonsignificant association of GDM with a GDM history in other
studies was a result of the overwhelming proportion of
nulliparous women in their studies who had no risk of
developing GDM. The association between GDM and blood
lipid indexes, including triglyceride (TG), high-density
lipoprotein, and low-density lipoprotein (LDL), has been
studied, and TG level had the closest relationship with GDM
[47]. Our research also found that although the levels of TG,
total cholesterol, and LDL in the GDM group were higher than
those in normal pregnant women in most included studies, only
TG level was a high-risk factor of GDM after the feature
selection. A novel model that included ultrasound data of
maternal fat distribution and serum inflammatory factors
observed that pregnant women with GDM had greater visceral
fat thickness and subcutaneous fat thickness; the model also
demonstrated that increased subcutaneous and visceral fat may
lead to increased insulin resistance in muscle and adipose tissue
[36]. Sweeting et al [27] observed higher leptin and lipocalin-2
levels and lower adiponectin levels in women who developed
GDM and proposed adipokines as GDM features.

Strengths and Limitations
The main strength of the study is that its methodology was
logical and described in sufficient detail to be reproducible.
Almost all published prognostic models for GDM were included
in this meta-analysis, which enabled their comparison. The data
collection table was based on the characteristics of the GDM
prediction models. Additionally, the novel PROBAST was used
to assess the risk of bias and applicability of prognostic
prediction model studies. The Quality Assessment of Diagnostic
Accuracy Studies (QUADAS) tool is a widely used tool for
estimating the bias and applicability of primary diagnostic
accuracy studies, but is not perfectly suited for predictive models
[48]. An increasing number of researchers prefer the PROBAST
to the QUADAS tool for assessing the bias of AI-based models
in systematic reviews as well as meta-analyses; this is the case
because more details of the model, such as data source,
processing, number of events per variable, feature selection,

model development, and model validation, were checked
intensively [49-52]. We found that 14 development studies had
a risk of bias in methodological quality or applicability, which
may lead to overfitted prediction models. It is noteworthy that
the quality of recent models is higher than that of those
published earlier according to the PROBAST. Some bias could
be prevented if the studies reported their research according to
the TRIPOD initiative [12].

Despite our study’s confirmation that ML models have
promising prediction ability for GDM, there are some limitations
to our research. The main limitations arose from the interstudy
heterogeneity. First, the sample sizes and distributions differed
among studies, affecting each model’s performance and
applicability. There were also a heterogenous variety of feature
selection methods. Some researchers preferred the features that
have a statistically significant association with GDM, while
others included the factors based on existing knowledge from
previously established models in combination with predictor
reliability, consistency, applicability, availability, and cost.
Second, the performance of a low-quality model might be
overestimated when the analysis of the internal bias of the model
is ignored. As some studies have bias to various degrees, the
results of the studies in this analysis must be applied with
caution. It should be noticed that the PROBAST is more likely
to identify bias in prediction models than other tools designed
for conventional diagnostic methods. The other limitation is
that few models underwent external validation to test their
extensibility. However, a previous study [8] performed an
external validation of 12 published GDM prediction models
and suggested that most of the published models showed
acceptable discrimination and calibration, but the author pointed
out possible heterogeneity in these models due to variations in
GDM incidence in different populations.

Clinical Implications
Although several GDM scoring systems have been developed,
none are widely recommended by current guidelines. Based on
the discussion above, several items must be considered in order
to maximize the advantages of ML models for predicting GDM
in clinical practice for model researchers or for decision makers.
For the former, we recommend that the decision concerning
which feature selection methods and ML algorithms to use
should be based on clinical need rather than accuracy. A model
with excess features that are difficult to obtain in routine
medicine is unlikely to be applied broadly. Researchers should
also provide the process of data preprocessing and outcomes of
validation, discrimination, calibration, and classification to
elaborate the performance of models from multiple perspectives.
For decision makers, we recommend that data sources, such as
a population-based cohort designed for GDM research with a
unified international diagnostic criterion, promote the ML
methods in this target. Studies revealed that although electronic
health records provide various data, including time series and
images for novel ML methods, they have inherent biases that
are influenced by the interaction of the patient with the health
care system. In contrast, community-based predictions may
robustly capture more asymptomatic high-risk cases [53]. The
incidence of GDM based on the International Association of
the Diabetes and Pregnancy Study Groups (IADPSG) (22.94%)
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and the National Institute for Health and Care Excellence
(21.72%) is over 3-fold higher than that based on the criteria
from the 7th edition of the Chinese obstetrics and gynecology
textbook (6.08%) published by the People’s Medical Publishing
House [54]. Some experts in China have advocated
implementation of the IADPSG criteria because they believe
that it will guide researchers to better understand the prevalence
of GDM in different regions and ensure that the country’s
standards will be aligned with international ones. Nevertheless,
researchers doubt that the IADPSG findings will apply to all
populations, since those criteria were applied to mainly
Caucasian women. All in all, it would indeed be helpful to unify
the GDM diagnostic criteria as soon as possible. This

meta-analysis reported the advantages of ML models and the
factors requiring attention. A similar meta-analysis of ML
models and deep learning algorithms used to detect patients at
risk of developing diabetes reported that AI-based automated
tools provide substantial benefits for reducing screening costs
and can replace earlier treatments [55].

Conclusions

In conclusion, ML methods demonstrate high performance and
will be a more selective and cost-effective screening method
for GDM. The importance of quality assessment and unified
diagnostic criteria should be further emphasized.
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