Published on in Vol 27 (2025)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/65961, first published .
Developing a Scalable Annotation Method for Large Datasets That Enhances Alarms With Actionability Data to Increase Informativeness: Mixed Methods Approach

Developing a Scalable Annotation Method for Large Datasets That Enhances Alarms With Actionability Data to Increase Informativeness: Mixed Methods Approach

Developing a Scalable Annotation Method for Large Datasets That Enhances Alarms With Actionability Data to Increase Informativeness: Mixed Methods Approach

Sophie Anne Inès Klopfenstein   1, 2 , MD ;   Anne Rike Flint   1 , MSc ;   Patrick Heeren   1, 3 , BSc ;   Mona Prendke   1 , BSc, MD ;   Amin Chaoui   1 , MD ;   Thomas Ocker   3 , Dr med, MD ;   Jonas Chromik   4 , MSc ;   Bert Arnrich   4 , Prof Dr ;   Felix Balzer   1, 5 * , MSc, MD, Dr rer nat, Prof Dr Med ;   Akira-Sebastian Poncette   1, 3 * , MD, Prof Dr Med

1 Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany

2 Core Facility Digital Medicine and Interoperability, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany

3 Department of Anesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany

4 Digital Health - Connected Healthcare, Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

5 Einstein Center Digital Future, Berlin, Germany

*these authors contributed equally

Corresponding Author:

  • Akira-Sebastian Poncette, MD, Prof Dr Med
  • Institute of Medical Informatics
  • Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
  • Charitéplatz 1
  • Berlin 10117
  • Germany
  • Phone: 49 030 450 581018
  • Email: akira-sebastian.poncette@charite.de