Published on in Vol 27 (2025)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/63130, first published .
Generating Artificial Patients With Reliable Clinical Characteristics Using a Geometry-Based Variational Autoencoder: Proof-of-Concept Feasibility Study

Generating Artificial Patients With Reliable Clinical Characteristics Using a Geometry-Based Variational Autoencoder: Proof-of-Concept Feasibility Study

Generating Artificial Patients With Reliable Clinical Characteristics Using a Geometry-Based Variational Autoencoder: Proof-of-Concept Feasibility Study

Fabrice Ferré   1 , MD, PhD ;   Stéphanie Allassonnière   2 , PhD ;   Clément Chadebec   2 , PhD ;   Vincent Minville   1 , MD, PhD

1 Department of Anesthesia, Intensive Care and Perioperative Medicine, Purpan University Hospital, Toulouse, France

2 Université Paris Cité, Unité Mixte de Recherche S1138, Institut national de recherche en sciences et technologies du numérique, Sorbonne University, Paris, France

Corresponding Author:

  • Fabrice Ferré, MD, PhD
  • Department of Anesthesia, Intensive Care and Perioperative Medicine
  • Purpan University Hospital
  • Place du Dr Baylac
  • Toulouse 31300
  • France
  • Phone: 33 561779988
  • Email: fabriceferre31@gmail.com