Published on in Vol 25 (2023)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/42621, first published
.
Journals
- Hartebrodt A, Röttger R, Blumenthal D. Federated singular value decomposition for high-dimensional data. Data Mining and Knowledge Discovery 2024;38(3):938 View
- Späth J, Sewald Z, Probul N, Berland M, Almeida M, Pons N, Le Chatelier E, Ginès P, Solé C, Juanola A, Pauling J, Baumbach J. Privacy-Preserving Federated Survival Support Vector Machines for Cross-Institutional Time-To-Event Analysis: Algorithm Development and Validation. JMIR AI 2024;3:e47652 View
- Pirmani A, Oldenhof M, Peeters L, De Brouwer E, Moreau Y. Accessible Ecosystem for Clinical Research (Federated Learning for Everyone): Development and Usability Study. JMIR Formative Research 2024;8:e55496 View
- Tajabadi M, Martin R, Heider D. Privacy-Preserving Decentralized Learning Methods for Biomedical Applications. Computational and Structural Biotechnology Journal 2024 View
- Hausleitner C, Mueller H, Holzinger A, Pfeifer B. Collaborative weighting in federated graph neural networks for disease classification with the human-in-the-loop. Scientific Reports 2024;14(1) View
- Probul N, Huang Z, Saak C, Baumbach J, List M. AI in microbiome‐related healthcare. Microbial Biotechnology 2024;17(11) View
- Süwer S, Ullah M, Probul N, Maier A, Baumbach J. Privacy-by-Design with Federated Learning will drive future Rare Disease Research. Journal of Neuromuscular Diseases 2024 View