Published on in Vol 25 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/42621, first published .

Journals

  1. Hartebrodt A, Röttger R, Blumenthal D. Federated singular value decomposition for high-dimensional data. Data Mining and Knowledge Discovery 2024;38(3):938 View
  2. Späth J, Sewald Z, Probul N, Berland M, Almeida M, Pons N, Le Chatelier E, Ginès P, Solé C, Juanola A, Pauling J, Baumbach J. Privacy-Preserving Federated Survival Support Vector Machines for Cross-Institutional Time-To-Event Analysis: Algorithm Development and Validation. JMIR AI 2024;3:e47652 View
  3. Pirmani A, Oldenhof M, Peeters L, De Brouwer E, Moreau Y. Accessible Ecosystem for Clinical Research (Federated Learning for Everyone): Development and Usability Study. JMIR Formative Research 2024;8:e55496 View
  4. Tajabadi M, Martin R, Heider D. Privacy-Preserving Decentralized Learning Methods for Biomedical Applications. Computational and Structural Biotechnology Journal 2024 View
  5. Hausleitner C, Mueller H, Holzinger A, Pfeifer B. Collaborative weighting in federated graph neural networks for disease classification with the human-in-the-loop. Scientific Reports 2024;14(1) View
  6. Probul N, Huang Z, Saak C, Baumbach J, List M. AI in microbiome‐related healthcare. Microbial Biotechnology 2024;17(11) View
  7. Süwer S, Ullah M, Probul N, Maier A, Baumbach J. Privacy-by-Design with Federated Learning will drive future Rare Disease Research. Journal of Neuromuscular Diseases 2024 View
  8. Huelser M, Mueller H, Díaz-Rodríguez N, Holzinger A. On the disagreement problem in Human-in-the-Loop federated machine learning. Journal of Industrial Information Integration 2025;45:100827 View
  9. Pais V, Rao S, Muniyal B. Healthcare federated learning: a survey of applications and frameworks. International Journal of Computers and Applications 2025;47(6):532 View
  10. Dubey A, Yang Z, Anžel A, Hattab G. Protocol for implementing the nested model for AI design and validation in compliance with AI regulations. STAR Protocols 2025;6(2):103771 View
  11. Burankova Y, Abele M, Bakhtiari M, von Toerne C, Barth T, Schweizer L, Giesbertz P, Schmidt J, Kalkhof S, Müller-Deile J, van Veelen P, Mohammed Y, Hammer E, Arend L, Adamowicz K, Laske T, Hartebrodt A, Frisch T, Meng C, Matschinske J, Späth J, Röttger R, Schwämmle V, Hauck S, Lichtenthaler S, Imhof A, Mann M, Ludwig C, Kuster B, Baumbach J, Zolotareva O. Privacy-preserving multicenter differential protein abundance analysis with FedProt. Nature Computational Science 2025;5(8):675 View
  12. Naganna M, Ramachandra Nayaka G. Enhanced federated learning framework for handling heterogeneity in medical image data. Progress in Artificial Intelligence 2025 View
  13. Weirauch U, Kreuz M, Birkenbihl C, Alb M, Quaranta M, Calzone L, Orozco-Ruiz S, Binder S, Fischer L, Clavreul S, Maguri M, Ferle M, Rade M, Azarias G, Hydren J, Jamarik J, Schwarz D, Sebestyen Z, Kuball J, Popp G, Antoine C, Knockaert M, Schoeder C, Fandrei D, Sanges C, Radvilas V, Gagelmann N, Rückert M, Penack O, Fricke S, Schmidt A, Ward C, Steinbeisser C, Van Gyseghem J, Niarakis A, Garderet L, Hudecek M, Neumuth T, Platzbecker U, Köhl U, Demlova R, Kremer A, Franke S, Fröhlich H, Merz M, Reiche K. Design specifications for biomedical virtual twins in engineered adoptive cellular immunotherapies. npj Digital Medicine 2025;8(1) View
  14. Bakhtiari M, Bonn S, Theis F, Zolotareva O, Baumbach J. FedscGen: privacy-preserving federated batch effect correction of single-cell RNA sequencing data. Genome Biology 2025;26(1) View
  15. Malpetti D, Scutari M, Gualdi F, van Setten J, van der Laan S, Haitjema S, Lee A, Hering I, Mangili F. Technical and legal aspects of federated learning in bioinformatics: applications, challenges and opportunities. Frontiers in Digital Health 2025;7 View

Books/Policy Documents

  1. Di Sivo D, Errico P, Venticinque S. Artificial Intelligence Techniques for Analysing Sensitive Data in Medical Cyber-Physical Systems. View
  2. Li K, Yan H, Lin J, Chen F, Cheng Y, Liang D. Machine Learning for Cyber Security. View
  3. Arias R, Ochoa K. Research Perspectives on Software Engineering and Systems Design. View

Conference Proceedings

  1. Sakhnovych Y, Röttger R, Mayer R. 2023 IEEE International Conference on Big Data (BigData). A Comparison of Federated Aggregation Strategies and Architectures for Next-word Prediction View
  2. Pustozerova A, Baumbach J, Mayer R. 2023 IEEE International Conference on Big Data (BigData). Differentially Private Federated Learning: Privacy and Utility Analysis of Output Perturbation and DP-SGD View
  3. Pustozerova A, Baumbach J, Mayer R. 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). Analysing Utility Loss in Federated Learning with Differential Privacy View
  4. Bonesana C, Malpetti D, Mitrović S, Mangili F, Azzimonti L. 2024 2nd International Conference on Federated Learning Technologies and Applications (FLTA). Flotta: A Secure and Flexible Spark-Inspired Federated Learning Framework View