Published on in Vol 24, No 9 (2022): September
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/39452, first published
.
Journals
- Sharma M, Makwana P, Chad R, Acharya U. A novel automated robust dual-channel EEG-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank. Applied Intelligence 2023;53(15):18681 View
- Casal-Guisande M, Ceide-Sandoval L, Mosteiro-Añón M, Torres-Durán M, Cerqueiro-Pequeño J, Bouza-Rodríguez J, Fernández-Villar A, Comesaña-Campos A. Design of an Intelligent Decision Support System Applied to the Diagnosis of Obstructive Sleep Apnea. Diagnostics 2023;13(11):1854 View
- Ha S, Choi S, Lee S, Wijaya R, Kim J, Joo E, Kim J. Predicting the Risk of Sleep Disorders Using a Machine Learning–Based Simple Questionnaire: Development and Validation Study. Journal of Medical Internet Research 2023;25:e46520 View
- Liu Y, Xie S, Yang X, Chen J, Zhou J. Development and Validation of a Nomogram for Predicting Obstructive Sleep Apnea Severity in Children. Nature and Science of Sleep 2024;Volume 16:193 View
- BaHammam A. Artificial Intelligence in Sleep Medicine: The Dawn of a New Era. Nature and Science of Sleep 2024;Volume 16:445 View
- Yan L, Li Z, Li C, Chen J, Zhou X, Cui J, Liu P, Shen C, Chen C, Hong H, Xu G, Cui Z, Tian S. Hspb1 and Lgals3 in spinal neurons are closely associated with autophagy following excitotoxicity based on machine learning algorithms. PLOS ONE 2024;19(5):e0303235 View
- Liu K, Geng S, Shen P, Zhao L, Zhou P, Liu W. Development and application of a machine learning-based predictive model for obstructive sleep apnea screening. Frontiers in Big Data 2024;7 View
- Pan Y, Zhao D, Zhang X, Yuan N, Yang L, Jia Y, Guo Y, Chen Z, Wang Z, Qu S, Bao J, Liu Y. Machine learning-Based model for prediction of Narcolepsy Type 1 in Patients with Obstructive Sleep Apnea with Excessive Daytime Sleepiness. Nature and Science of Sleep 2024;Volume 16:639 View
- Lee Y, Jeon S, Auh Q, Chung E. Automatic prediction of obstructive sleep apnea in patients with temporomandibular disorder based on multidata and machine learning. Scientific Reports 2024;14(1) View
- Dai R, Yang K, Zhuang J, Yao L, Hu Y, Chen Q, Zheng H, Zhu X, Ke J, Zeng Y, Fan C, Chen X, Fan J, Zhang Y. Enhanced machine learning approaches for OSA patient screening: model development and validation study. Scientific Reports 2024;14(1) View
- Abd-alrazaq A, Aslam H, AlSaad R, Alsahli M, Ahmed A, Damseh R, Aziz S, Sheikh J. Detection of Sleep Apnea Using Wearable AI: Systematic Review and Meta-Analysis. Journal of Medical Internet Research 2024;26:e58187 View
- Zhang R, Ou Q. What can we do for obstructive sleep apnea patients in China?. Sleep Research 2024 View
- Zhang L, Zhao S, Yang W, Yang Z, Wu Z, Zheng H, Lei M. Utilizing machine learning techniques to identify severe sleep disturbances in Chinese adolescents: an analysis of lifestyle, physical activity, and psychological factors. Frontiers in Psychiatry 2024;15 View
- Mohammad F, Al Mansoor K. SLA-MLP: Enhancing Sleep Stage Analysis from EEG Signals Using Multilayer Perceptron Networks. Diagnostics 2024;14(23):2657 View
- Gupta S, Sharma R. Pediatric Obstructive Sleep Apnea: Diagnostic Challenges and Management Strategies. Cureus 2024 View
Books/Policy Documents
- El Sherbini A, Glicksberg B, Krittanawong C. Artificial Intelligence in Clinical Practice. View
- Lee P, Gu W, Huang W, Chiang A. Handbook of AI and Data Sciences for Sleep Disorders. View
- Almarshad M, Islam S, Bahammam S, Al-Ahmadi S, BaHammam A. Handbook of AI and Data Sciences for Sleep Disorders. View