Published on in Vol 24, No 8 (2022): August

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/38082, first published .
Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study

Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study

Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study

Authors of this article:

Jili Li1 Author Orcid Image ;   Siru Liu2 Author Orcid Image ;   Yundi Hu3 Author Orcid Image ;   Lingfeng Zhu4 Author Orcid Image ;   Yujia Mao1 Author Orcid Image ;   Jialin Liu5 Author Orcid Image

Journals

  1. Liu S, Schlesinger J, McCoy A, Reese T, Steitz B, Russo E, Koh B, Wright A. New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record. Journal of the American Medical Informatics Association 2022;30(1):120 View
  2. Hu X, Yang Z, Ma Y, Wang M, Liu W, Qu G, Zhong C. Development and validation of a machine learning-based predictive model for secondary post-tonsillectomy hemorrhage. Frontiers in Surgery 2023;10 View
  3. Chen Z, Li T, Guo S, Zeng D, Wang K. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure. Frontiers in Cardiovascular Medicine 2023;10 View
  4. Tian P, Liang L, Zhao X, Huang B, Feng J, Huang L, Huang Y, Zhai M, Zhou Q, Zhang J, Zhang Y. Machine Learning for Mortality Prediction in Patients With Heart Failure With Mildly Reduced Ejection Fraction. Journal of the American Heart Association 2023;12(12) View
  5. Wang L, Duan S, Yan P, Luo X, Zhang N. Utilization of interpretable machine learning model to forecast the risk of major adverse kidney events in elderly patients in critical care. Renal Failure 2023;45(1) View
  6. Li X, Shang C, Xu C, Wang Y, Xu J, Zhou Q. Development and comparison of machine learning-based models for predicting heart failure after acute myocardial infarction. BMC Medical Informatics and Decision Making 2023;23(1) View
  7. Yang X, Qiu H, Wang L, Wang X. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Journal of Medical Internet Research 2023;25:e44417 View
  8. Dai Y, Ouyang C, Luo G, Cao Y, Peng J, Gao A, Zhou H. Risk factors for high CAD-RADS scoring in CAD patients revealed by machine learning methods: a retrospective study. PeerJ 2023;11:e15797 View
  9. Ustin P, Gafarov F, Berdnikov A. Analysis of Interpersonal Relationships of Social Network Users Using Explainable Artificial Intelligence Methods. OBM Neurobiology 2023;07(03):1 View
  10. Li L, Ding L, Zhang Z, Zhou L, Zhang Z, Xiong Y, Hu Z, Yao Y. Development and Validation of Machine Learning–Based Models to Predict In-Hospital Mortality in Life-Threatening Ventricular Arrhythmias: Retrospective Cohort Study. Journal of Medical Internet Research 2023;25:e47664 View
  11. Jia T, Xu K, Bai Y, Lv M, Shan L, Li W, Zhang X, Li Z, Wang Z, Zhao X, Li M, Zhang Y. Machine-learning predictions for acute kidney injuries after coronary artery bypass grafting: a real-life muticenter retrospective cohort study. BMC Medical Informatics and Decision Making 2023;23(1) View
  12. Sutradhar A, Al Rafi M, Shamrat F, Ghosh P, Das S, Islam M, Ahmed K, Zhou X, Azad A, Alyami S, Moni M. BOO-ST and CBCEC: two novel hybrid machine learning methods aim to reduce the mortality of heart failure patients. Scientific Reports 2023;13(1) View
  13. Cai D, Chen Q, Mu X, Xiao T, Gu Q, Wang Y, Ji Y, Sun L, Wei J, Wang Q. Development and validation of a novel combinatorial nomogram model to predict in-hospital deaths in heart failure patients. BMC Cardiovascular Disorders 2024;24(1) View
  14. Li X, Wang Z, Zhao W, Shi R, Zhu Y, Pan H, Wang D. Machine learning algorithm for predict the in-hospital mortality in critically ill patients with congestive heart failure combined with chronic kidney disease. Renal Failure 2024;46(1) View
  15. Villanueva Solórzano J, Esponda Prado J, Tamborell Rivera A. Enfermedades crónicas no transmisibles como factor de riesgo para mortalidad en cuidados intensivos. Acta Médica Grupo Ángeles 2024;22(1):22 View
  16. Samadi M, Guzman-Maldonado J, Nikulina K, Mirzaieazar H, Sharafutdinov K, Fritsch S, Schuppert A. A hybrid modeling framework for generalizable and interpretable predictions of ICU mortality across multiple hospitals. Scientific Reports 2024;14(1) View
  17. Strangio A, Leo I, Sabatino J, Brida M, Siracusa C, Carabetta N, Zaffino P, Critelli C, Laschera A, Spadea M, Torella D, Sabouret P, De Rosa S. Is artificial intelligence the new kid on the block? Sustainable applications in cardiology. Vessel Plus 2024 View
  18. Feng S, Wang S, Liu C, Wu S, Zhang B, Lu C, Huang C, Chen T, Zhou C, Zhu J, Chen J, Xue J, Wei W, Zhan X. Prediction model for spinal cord injury in spinal tuberculosis patients using multiple machine learning algorithms: a multicentric study. Scientific Reports 2024;14(1) View
  19. Gao Z, Liu X, Kang Y, Hu P, Zhang X, Yan W, Yan M, Yu P, Zhang Q, Xiao W, Zhang Z. Improving the Prognostic Evaluation Precision of Hospital Outcomes for Heart Failure Using Admission Notes and Clinical Tabular Data: Multimodal Deep Learning Model. Journal of Medical Internet Research 2024;26:e54363 View
  20. Xie P, Wang H, Xiao J, Xu F, Liu J, Chen Z, Zhao W, Hou S, Wu D, Ma Y, Xiao J. Development and Validation of an Explainable Deep Learning Model to Predict In-Hospital Mortality for Patients With Acute Myocardial Infarction: Algorithm Development and Validation Study. Journal of Medical Internet Research 2024;26:e49848 View
  21. Cao S, Hu Y. Interpretable machine learning framework to predict gout associated with dietary fiber and triglyceride-glucose index. Nutrition & Metabolism 2024;21(1) View
  22. Saqib M, Perswani P, Muneem A, Mumtaz H, Neha F, Ali S, Tabassum S. Machine learning in heart failure diagnosis, prediction and prognosis: Review. Annals of Medicine & Surgery 2024 View
  23. Li Y, Cao Y, Wang M, Wang L, Wu Y, Fang Y, Zhao Y, Fan Y, Liu X, Liang H, Yang M, Yuan R, Zhou F, Zhang Z, Kang H. Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data. Antimicrobial Resistance & Infection Control 2024;13(1) View
  24. Salih A, Galazzo I, Gkontra P, Rauseo E, Lee A, Lekadir K, Radeva P, Petersen S, Menegaz G. A review of evaluation approaches for explainable AI with applications in cardiology. Artificial Intelligence Review 2024;57(9) View
  25. Zhu X, Zhang K, Li X, Su F, Tian J. An interpretable machine learning method for risk stratification of patients with acute coronary syndrome. Heliyon 2024;10(17):e36815 View
  26. Wu S, Li C, Chien T, Chu C. Integrating Structured and Unstructured Data with BERTopic and Machine Learning: A Comprehensive Predictive Model for Mortality in ICU Heart Failure Patients. Applied Sciences 2024;14(17):7546 View
  27. Wu X, Wang Z, Zheng L, Yang Y, Shi W, Wang J, Liu D, Zhang Y. Construction and verification of a machine learning-based prediction model of deep vein thrombosis formation after spinal surgery. International Journal of Medical Informatics 2024;192:105609 View
  28. Sun Z, Wang Z, Yun Z, Sun X, Lin J, Zhang X, Wang Q, Duan J, Huang L, Li L, Yao K. Machine learning‐based model for worsening heart failure risk in Chinese chronic heart failure patients. ESC Heart Failure 2024 View
  29. Liu J, Xiao J, Wu H, Ye J, Li Y, Zou B, Li Y. A retrospective cohort study of coagulation function in patients with liver cirrhosis receiving cefoperazone/sulbactam with and without vitamin K1 supplementation. International Journal of Clinical Pharmacy 2024;46(6):1492 View
  30. Wang L, Liang D, Huangfu H, Shi X, Liu S, Zhong P, Luo Z, Ke C, Lai Y. Iron Deficiency: Global Trends and Projections from 1990 to 2050. Nutrients 2024;16(20):3434 View
  31. Song Y, Sun Y, Weng Q, Yi L. Using machine learning model for predicting risk of memory decline: A cross sectional study. Heliyon 2024;10(20):e39575 View
  32. Guan C, Gong A, Zhao Y, Yin C, Geng L, Liu L, Yang X, Lu J, Xiao B. Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: a multi-center study. Critical Care 2024;28(1) View
  33. Liu Z, Li J, Zhang Y, Wu D, Huo Y, Yang J, Zhang M, Dong C, Jiang L, Sun R, Zhou R, Li F, Yu X, Zhu D, Guo Y, Chen J. Auxiliary Diagnosis of Children With Attention-Deficit/Hyperactivity Disorder Using Eye-Tracking and Digital Biomarkers: Case-Control Study. JMIR mHealth and uHealth 2024;12:e58927 View
  34. Liu X, Xie Z, Zhang Y, Huang J, Kuang L, Li X, Li H, Zou Y, Xiang T, Yin N, Zhou X, Yu J. Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study. Cardiovascular Diabetology 2024;23(1) View
  35. Xu H, Peng X, Peng Z, Wang R, Zhou R, Fu L. Construction and SHAP interpretability analysis of a risk prediction model for feeding intolerance in preterm newborns based on machine learning. BMC Medical Informatics and Decision Making 2024;24(1) View
  36. Derakhshandara S, Franzoni V, Mezzetti D, Poggioni V. Machine Learning Decision Support for Macronutrients in Neonatal Parenteral Nutrition. IEEE Access 2024;12:170001 View
  37. Ding L, Yin X, Wen G, Sun D, Xian D, Zhao Y, Zhang M, Yang W, Chen W. Prediction of preterm birth using machine learning: a comprehensive analysis based on large-scale preschool children survey data in Shenzhen of China. BMC Pregnancy and Childbirth 2024;24(1) View

Books/Policy Documents

  1. Herdian C, Widianto S, Ginting J, Geasela Y, Sutrisno J. Engineering Applications of Artificial Intelligence. View
  2. Hu J, Mo C. Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. View