Published on in Vol 22, No 9 (2020): September

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/21573, first published .
An Innovative Artificial Intelligence–Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study

An Innovative Artificial Intelligence–Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study

An Innovative Artificial Intelligence–Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study

Journals

  1. Fong-Mata M, García-Guerrero E, Mejía-Medina D, López-Bonilla O, Villarreal-Gómez L, Zamora-Arellano F, López-Mancilla D, Inzunza-González E. An Artificial Neural Network Approach and a Data Augmentation Algorithm to Systematize the Diagnosis of Deep-Vein Thrombosis by Using Wells’ Criteria. Electronics 2020;9(11):1810 View
  2. Kulzer B. Wie profitieren Menschen mit Diabetes von Big Data und künstlicher Intelligenz?. Der Diabetologe 2021;17(8):799 View
  3. Sumathi A, Meganathan S, Vijila Ravisankar B. An Intelligent Gestational Diabetes Diagnosis Model Using Deep Stacked Autoencoder. Computers, Materials & Continua 2021;69(3):3109 View
  4. Daley B, Ni’Man M, Neves M, Bobby Huda M, Marsh W, Fenton N, Hitman G, McLachlan S. mHealth apps for gestational diabetes mellitus that provide clinical decision support or artificial intelligence: A scoping review. Diabetic Medicine 2022;39(1) View
  5. Sumathi A, Meganathan S. Ensemble Classifier Technique to Predict Gestational Diabetes Mellitus (GDM). Computer Systems Science and Engineering 2022;40(1):313 View
  6. Chen P, Lu Y, Kang Y, Chang C. The Accuracy of Artificial Intelligence in the Endoscopic Diagnosis of Early Gastric Cancer: Pooled Analysis Study. Journal of Medical Internet Research 2022;24(5):e27694 View
  7. Kurt B, Gürlek B, Keskin S, Özdemir S, Karadeniz Ö, Kırkbir İ, Kurt T, Ünsal S, Kart C, Baki N, Turhan K. Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques. Medical & Biological Engineering & Computing 2023;61(7):1649 View
  8. El-Rashidy N, ElSayed N, El-Ghamry A, Talaat F. RETRACTED ARTICLE: Utilizing fog computing and explainable deep learning techniques for gestational diabetes prediction. Neural Computing and Applications 2023;35(10):7423 View
  9. El-Rashidy N, ElSayed N, El-Ghamry A, Talaat F. RETRACTED ARTICLE: Prediction of gestational diabetes based on explainable deep learning and fog computing. Soft Computing 2022;26(21):11435 View
  10. Kulzer B. Digitale Prävention des Typ-2-Diabetes. Public Health Forum 2021;29(4):297 View
  11. R K, Pazhanirajan D. A Review of Diabetes Mellitus Detection using Machine Learning Techniques. International Journal of Innovative Technology and Exploring Engineering 2021;10(6):32 View
  12. Todorovic J, Dugalic S, Macura M, Gutic B, Milincic M, Bozic D, Stojiljkovic M, Micic J, Pantic I, Perovic M, Parapid B, Gojnic M. Historical aspects of diabetes, morbidity and mortality. Srpski arhiv za celokupno lekarstvo 2023;151(1-2):112 View
  13. Wang Y, Chen T, Chiu M. A systematic approach to enhance the explainability of artificial intelligence in healthcare with application to diagnosis of diabetes. Healthcare Analytics 2023;3:100183 View
  14. Ramirez-Bautista J, Chaparro-Cárdenas S, Esmer C, Huerta-Ruelas J. Artificial intelligence approaches to physiological parameter analysis in the monitoring and treatment of non-communicable diseases: A review. Biomedical Signal Processing and Control 2024;87:105463 View
  15. Kumar R, Sood P, Nirala R, Ade R, Sonaji A. Uses of AI in Field of Radiology- What is State of Doctor & Pateints Communication in Different Disease for Diagnosis Purpose. Journal for Research in Applied Sciences and Biotechnology 2023;2(5):51 View
  16. Gao W, Xie J, Ke Y, Tian M, Zeng Z, Ma X, Zhi M. A two-stage prediction filling method with support vector technologies optimized competitively in stages by grey wolf optimizer and particle swarm optimization for missing fasting blood glucose. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2023;237(12):1427 View
  17. Chen T, Wu H, Chiu M. A deep neural network with modified random forest incremental interpretation approach for diagnosing diabetes in smart healthcare. Applied Soft Computing 2024;152:111183 View
  18. Lu H, Ding X, Hirst J, Yang Y, Yang J, Mackillop L, Clifton D. Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes. IEEE Reviews in Biomedical Engineering 2024;17:98 View
  19. Zhou T, Gu S, Shao F, Li P, Wu Y, Xiong J, Wang B, Zhou C, Gao P, Hua X. Prediction of preeclampsia from retinal fundus images via deep learning in singleton pregnancies: a prospective cohort study. Journal of Hypertension 2024;42(4):701 View
  20. Gebremariam B, Aboye G, Dessalegn A, Simegn G. Rule-based expert system for the diagnosis of maternal complications during pregnancy: For low resource settings. DIGITAL HEALTH 2024;10 View
  21. Kannaiyan A, Bagchi S, Vijayan V, Georgiy P, Manickavasagam S, Kumar D. Revolutionizing Women\'s Health: Artificial Intelligence\'s Impact on Obstetrics and Gynecology. Journal of South Asian Federation of Obstetrics and Gynaecology 2024;16(2):161 View
  22. Kolozali Ş, White S, Norris S, Fasli M, van Heerden A. Explainable Early Prediction of Gestational Diabetes Biomarkers by Combining Medical Background and Wearable Devices: A Pilot Study With a Cohort Group in South Africa. IEEE Journal of Biomedical and Health Informatics 2024;28(4):1860 View
  23. Umate R, Bhawalkar J, Tripathy S, Khopkar-Kale P. Gestational Diabetes Mellitus: What is Next on This Front with Artificial Intelligence?. Journal of Diabetology 2024;15(2):241 View
  24. Iftikhar M, Saqib M, Qayyum S, Asmat R, Mumtaz H, Rehan M, Ullah I, Ud-din I, Noori S, Khan M, Rehman E, Ejaz Z. Artificial intelligence-driven transformations in diabetes care: a comprehensive literature review. Annals of Medicine & Surgery 2024;86(9):5334 View
  25. Alkharis V, Asiandi , Supriyadi , Purwandari R. Design and Development of Diabestfriend Application for Digital Self Care Management of Type 2 Diabetes Mellitus Patients. Revista de Gestão Social e Ambiental 2024;18(10):e08958 View
  26. Campanella S, Paragliola G, Cherubini V, Pierleoni P, Palma L. Towards Personalized AI-Based Diabetes Therapy: A Review. IEEE Journal of Biomedical and Health Informatics 2024;28(11):6944 View

Books/Policy Documents

  1. Vehi J, Mujahid O, Contreras I. Artificial Intelligence in Medicine. View
  2. Hong N, Park Y, You S, Rhee Y. Artificial Intelligence in Medicine. View
  3. Ming W, He Z. Advanced Bioscience and Biosystems for Detection and Management of Diabetes. View
  4. Hong N, Park Y, You S, Rhee Y. Artificial Intelligence in Medicine. View
  5. Vehi J, Mujahid O, Contreras I. Artificial Intelligence in Medicine. View
  6. Malgieri L. Practical Guide to Simulation in Delivery Room Emergencies. View
  7. Chen T. Sustainable Smart Healthcare. View
  8. Chen T. Sustainable Smart Healthcare. View
  9. Chen T. Explainable Ambient Intelligence (XAmI). View
  10. Ratul M, Yanoor Bristy T, Sayeed N, Islam A, Chaudhry B. HCI International 2024 – Late Breaking Papers. View