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Abstract

Background: Gestational diabetes mellitus (GDM) can cause adverse consequences to both mothers and their newborns.
However, pregnant women living in low- and middle-income areas or countries often fail to receive early clinical interventions
at local medical facilities due to restricted availability of GDM diagnosis. The outstanding performance of artificial intelligence
(Al) in disease diagnosis in previous studies demonstrates its promising applicationsin GDM diagnosis.

Objective: Thisstudy aimsto investigate the implementation of awell-performing Al agorithm in GDM diagnosisin a setting,
which requires fewer medical equipment and staff and to establish an app based on the Al algorithm. This study also explores
possible progressif our app iswidely used.

Methods: An Al model that included 9 algorithms was trained on 12,304 pregnant outpatients with their consent who received
atest for GDM in the obstetrics and gynecology department of the First Affiliated Hospital of Jinan University, aloca hospital
in South China, between November 2010 and October 2017. GDM was diagnosed according to American Diabetes Association
(ADA) 2011 diagnostic criteria. Age and fasting blood glucose were chosen as critical parameters. For validation, we performed
k-fold cross-validation (k=5) for the internal dataset and an external validation dataset that included 1655 cases from the Prince
of Wales Hospital, the affiliated teaching hospital of the Chinese University of Hong Kong, a non-local hospital. Accuracy,
sensitivity, and other criteria were calculated for each algorithm.
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Results: The areas under the receiver operating characteristic curve (AUROC) of external validation dataset for support vector
machine (SVM), random forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB), decision tree, logistic regression (LR),
eXtreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774, 0.614,
0.769, 0.742, and 0.757, respectively. SVM also retained high performance in other criteria. The specificity for SYM retained
100% in the external validation set with an accuracy of 88.7%.

Conclusions: Our prospective and multicenter study is the first clinical study that supports the GDM diagnosis for pregnant
women in resource-limited areas, using only fasting blood glucose value, patients’ age, and a smartphone connected to the internet.
Our study proved that SVM can achieve accurate diagnosis with less operation cost and higher efficacy. Our study (referred to
as GDM-AI study, ie, the study of Al-based diagnosis of GDM) aso shows our app has a promising future in improving the
quality of maternal health for pregnant women, precision medicine, and long-distance medical care. We recommend future work

should expand the dataset scope and replicate the process to validate the performance of the Al algorithms.

(J Med Internet Res 2020;22(9):€21573) doi: 10.2196/21573
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Introduction

Gestational diabetes mellitus (GDM), common in pregnancy,
exerts negative effects on both mothers and their newborns,
including cesarean delivery, shoulder dystocia, macrosomia,
neonatal hypoglycemia, post-GDM type 2 diabetes mellitus,
cardiovascular disease of pregnant women, and increased risk
of obesity and type 2 diabetes mellitus on the offspring [1].
However, if GDM can be diagnosed at an early stage, early
interventions can be implemented to maximally reduce its
adverse consequences[2,3]. Although GDM prevalencein some
developing African countries is high (eg, 8.2% in Nigeria and
9.5%in Tanzania) [4], pregnant women arelesslikely to receive
adequate health care due to the lack of skilled health workers
[5]. Other factors, such as poverty, inadequate medical services,
long distance to hospitals, less accessto information, and culture
and traditions also prevent women from seeking care during
pregnancy.

Artificia intelligence (Al) has been widely used in disease
diagnosisin recent years[6,7]. Severa advanced Al agorithms,
such as deep learning, support vector machine (SVM), and
convolutional neural network, have shown comparable
performance to clinicians [8]. Major advanced Al approaches
yield significant discriminative performance with relatively
high sensitivity, specificity, and accuracy in object-identifying
tasks [9,10]. At the same time, the world has witnessed the
instantaneity of reporting and the consistency of producing
results by Al [11]. Al is becoming more suitable for use in
clinical daily practice [12] and offers the advantage of greater
accuracy and efficiency [13]. An Al-driven dietary platform
has been devel oped for diabetes management [14], and Al tools
can enhance diabetes care for individuals and societal health
[15,16].

Dueto the advantages above, Al isexpected to befurther studied
and implemented inthe GDM diagnosisfield to maximize social
and economic benefits. A systematic review and meta-analysis
on telemedicine technologies for diabetes in pregnancy
conducted by our team in 2016 showed that telemedicine
technologies can streamline clinical care delivery and improve
maternal satisfaction [17]. We aso evaluated the current state
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of GDM diagnosis programs by searching Scopus, Web of
Science, PubMed, and Embase for studies published in English
from inception up to November 17, 2019, using the keywords
“gestational diabetes mdllitus,” “GDM,” “GDM screening,”
“GDM detection,” “GDM diagnosis,” “machine learning,”
“artificial intelligence (Al),” and “deep learning.” Although
some papersapplied Al on screening or early diagnosis of GDM
[18,19], they only used the expert system or risk score model
instead of up-to-date Al agorithms such as random forest.
Recently, ateam from | sragl applied top 20 contributing features
such as baseline risk score and glucose challenge test results of
previous pregnancy. A machine learning model based on
national electronic health records reached high accuracy for
GDM diagnosis[20]. Therefore, weintend to establish a GDM
diagnosistool using Al technology for women in low-resource
areas. As our app targets to serve patients in resource-limited
areas, it would be more practical and accessible if we can use
only fasting glucose value and other patient’s basic health
information such as age, body weight, and height. This study
(referred to as GDM-AI study, ie, the study of Al-based
diagnosis of GDM) aimsto validate and rank the performance
and applicability of Al algorithmsin diagnosing GDM and to
develop an innovative Al application for maternal health care.
This paper will also present the ideas behind our app, as well
asits contributions and prospects.

Methods

Recruitment

Our retrospective study initially involved 12,316 pregnant
women who delivered asingleton at the First Affiliated Hospital
of Jinan University (Guangzhou, Guangdong, China) from
November 1, 2010, to October 31, 2017. We obtained ethics
review and approval from the research ethics committee of the
Jinan University. Medical records were used, and al data was
confidential with anonymized numbers. The study excluded 12
pregnant women, as their profiles were not complete. A total
of 12,304 pregnant women with full profile after admission
were used as the development set and were diagnosed with or
without GDM according to the International Association of
Diabetes and Pregnancy Study Groups (IADPSG) diagnosis
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criteria. Patientswere excluded if they met any of thefollowing
criteria: non-Chinese, multiple gestations, oral glucosetolerance
test performed before 12 weeks, delivery in another hospital,
major fetal malformation, or without patient clinical outcome
in the electronic medical records. We extracted clinical data
from the database of the First Affiliated Hospital of Jinan
University (Guangzhou, Guangdong, China) asthe devel opment

Table 1. Baseline characteristics.

Shen et al

set, including the clinical baseline characteristics, maternal and
neonatal complications, along with their clinical outcomes. The
demographics and clinical characteristics of the patients are
presented in Table 1. Another dataset of 1655 caseswas obtained
with the same criteria as an external validation set from Prince
of WalesHospital, the affiliated teaching hospital of the Chinese
University of Hong Kong.

Demographicand clini- Developmental (Training) set (N=12,304)

External validation set (N=1655)

cal variables
GDM? (n=2761) NGTP (n=9543) Pvaue GDM (n=240) NGT (n=1415) P value
(mean, SD) (mean, SD) (mean, SD) (mean, SD)
Age (year) 30.21 (4.42) 28.50 (3.98) <001 32.87(4.71) 30.33(4.82) <.001
Fasting Glucose Value  4.89 (0.73) 4.37 (0.36) <.001 4.74(0.58) 4.32(0.28) <.001
(mmol/L)
1-h postload plasma 9.82 (1.84) 7.33(1.38) <.001 10.16(1.63) 7.25 (1.35) <.001
glucose (mmol/L)
2-h postload plasma 8.53 (1.65) 6.47 (1.04) <.001 8.63(1.23) 6.24 (1.02) <.001

glucose (mmol/L)

3GDM: gestational diabetes mellitus
PNGT: normal glucose tolerance

Study Design

All pregnant women received 2-hour 75 g oral glucosetolerance
test according to the American Diabetes Association (ADA)
2011 criteria. Asper the ADA 2011 diagnostic criteriafor GDM,
the upper limits of the blood glucose for fasting, 1-hour
postprandial, and 2-hour postprandial blood glucose are 5.1
mmol/L, 10.0 mmol/L, and 8.5 mmol/L, respectively. Those
with one or more abnormal value(s) will be diagnosed asGDM.

Each case was carefully reviewed by 2 experts individually.
The patient’s evaluation result, which would be finished within
a week, was assigned to GDM cohort and non-GDM cohort,
depending on the laboratory data change, clinical manifestation,
clinical intervention, and final diagnosis. If a discrepancy
occurred, the case was reviewed by another third expert and
labeled after consensus was reached. In the developmental
dataset, caseswere|abeled aseither normal or GDM, according
to the ADA 2011 criteria

We compared baseline characteristics between the 2 cohorts
(nonGDM and GDM) as shown in Table 1 and found that there
were significant differences between them, except height.
Therefore, we tested several times different combinations of
baseline characteristics in Al agorithms to get the best
combination for distinguishing GDM from nonGDM.
Eventually, we came to a combination of age and fasting blood
glucose.

We tested 9 advanced Al agorithms, including SVM, random
forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB),
decision tree, logistic regression (LR), eXtreme gradient
boosting (XGBoost), and gradient boosting decision tree
(GBDT), by utilizing age and fasting blood glucose in the
collected datasets. We used the development set for model
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development and carried out internal validation with 5-fold
cross-validation. The development set was randomly split into
5 folds. Within each fold, we used 1 fold for validation and the
rest for training the model. Resultswere calculated by averaging
the results from the 5 separate experiments.

GDM classification performances of the trained models were
validated using the internal validation with 5-fold
cross-validation and the externa vaidation set, which was
evaluated using the area under the receiver operating
characteristic curve (AUROC).

Statistical Analysis

We hypothesized that the Al model is at least comparable to
the ADA 2011 criteria. Thus, we compared performances of
the advanced Al models to ADA 2011 diagnosis results.
Accuracy, sensitivity, specificity, area under the curve (AUC),
positive predictive value (PPV), negative predictive value
(NPV), Brier score, positive likelihood ratio, and negative
likelihood ratio were calculated for each algorithm.

For the validation datasets, performance was evaluated from
the probability values by using the AUROC curve analysis for
GDM detection with python 3.6.8 based on Jupyter Notebook
(Project Jupyter).

Performance evaluation was achieved via receiver operating
characteristic (ROC) curve analysis, and calculation of AUC
using the “pROC” package. The cut-off value (0.501) for the
model was determined by the “Optimal Cutpoints’ package
using the Youden method. Asymptotic 2-sided 95% Cls were
computed for the logit transform of each proportion (ie,
sensitivity and specificity). All analyses were performed using
Stata (version 14.0).
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Results

A total of 12,304 outpatient cases were included in the
development dataset. Among these women, 77.6% (9543/12304)
were non-GDM as per the ADA 2011 criteria, and 22.4%
(2761/12,304) women were diagnosed as GDM. GDM was
found in 14.5% (240/1655) cases among the external validation
dataset.

A 5-fold cross-validation was applied for the internal dataset,
and accuracy and false positives were recorded. All the
evaluation indices are presented in Table 2 and Table 3.

Shen et al

ROC curves are shown in Figure 1, which indicates the higher
performance of AUC of SVM, AdaBoost, NB, LR, XGBoost,
and GBDT.

For theinternal validation dataset, the best performance of AUC
was for GBDT and XGBoost, which had relatively higher
accuracy, specificity, and PPV, while their Brier scores were
lower than those of others (Table 2).

For the external validation dataset, the AUC of SVM for GDM
was 0.78, with 88.7% accuracy and 100% specificity (Table 3).
The specificity of NB was 98.2% for diagnosing GDM with
AUC of 0.774 (Table 3). Demonstration of Al Application is
shown in Table 4.

Table 2. The detection performance of 9 algorithms for the internal validation dataset.

Algorithms Accuracy Sensitivity Specificity ppv2 NPVP Brier score AUCS
svmd 0.849 0.377 0.985 0.880 0.845 0.151 0.766
Random forest 0.833 0.432 0.949 0.709 0.852 0.167 0.728
AdaBoost 0.860 0.376 1 1 0.847 0.140 0.763
KNNE 0.841 0.415 0.964 0.768 0.851 0.159 0.723
NBf 0.845 0.367 0.983 0.860 0.843 0.155 0.768
Decision tree 0.838 0.431 0.956 0.738 0.853 0.162 0.706
LRY 0.844 0.363 0.984 0.865 0.842 0.156 0.765
XGBoogt” 0.860 0.377 1 1 0.847 0.140 0.771
GBDT 0.860 0.376 1 1 0.847 0.140 0.772

8PPV: positive predictive value.

NPV negative predictive value.

CAUC: area under the curve.

dsvm: support vector machine.

€KNN: k-nearest neighbors.

NB: naive Bayes.

9LR: logistic regression.

hX GBoost: eXtreme gradient boosting.
iGBDT: gradient boosting decision tree.
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Table 3. The detection performance of 9 algorithms for the external validation dataset.

Algorithms Accuracy Sensitivity Specificity ppv2 NPVP Brier score AUCS
svmd 0.887 0.221 1 1 0.883 0.113 0.780
Random forest 0.838 0.263 0.936 0.409 0.882 0.162 0.655
AdaBoost 0.882 0.183 1 1 0.878 0.118 0.736
KNNE 0.862 0.254 0.965 0.550 0.884 0.138 0.669
NBf 0.878 0.263 0.982 0.716 0.887 0.122 0.774
Decision tree 0.841 0.242 0.942 0.414 0.880 0.159 0.614
LRY 0.877 0.258 0.983 0.713 0.887 0.123 0.769
XGBoogt” 0.882 0.183 1 1 0.878 0.118 0.742
GBDT 0.882 0.183 1 1 0.878 0.118 0.757

3ppV: positive predictive value.

NPV negative predictive value.

CAUC: area under the curve.

dsvm: support vector machine.

€KNN: k-nearest neighbors.

NB: naive Bayes.

9LR: logistic regression.

hx GBoost: extreme gradient boosting.
iGBDT: gradient boosting decision tree.

Figure 1. Overall area under the receiver operating characteristic curves for internal validation dataset. SVM: support vector machine; knn: k-nearest
neighbors; NB: naive Bayes; LR: logistic regression; XGBoost: eXtreme gradient boosting; GBDT: gradient boosting decision tree.
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Table 4. Demonstration of Al application.

Shen et al

Sample Age Fasting glucose (mmol/L) Result with Al application
1 35 52 GDM?

2 25 45 No GDM

3 27 4.8 No GDM

4 33 35 No GDM

5 37 56 GDM

6 30 4.3 No GDM

7 30 6.7 GDM

8 27 54 GDM

3GDM: gestational diabetes mellitus.

Thegoal of thispreliminary research wasto develop an app and
demonstrate the soundness of the methods. The users can put
data into the app, which will be transferred simultaneously to
the doctors and other medical personnel. In this way, the app
provides aplatform for the doctor to get informed of the users
health status and give intervention to the GMD patients, while
the app user can keep track of their physical conditions.

To be more specific, our mobile app is expected to quantify the
daily lives of pregnant women and optimize diet, exercise, and
sleep to help them maximize their well-being. The app serves
asan“onlineintelligent nurse” that can answer simple questions
to reduce obstetric doctors’ workload. The built-in model was
chosen for our app, which will till be tested, adjusted, and

Figure2. How the Al app works.
Clinical Data

Build the mathematical model to
predict health status of pregnant
women based on clinical data

Reduced dimension: principal component analysis
Undergatraining random forest and deep learning
walidation: by using the external database to test the model

improved continually. Thereis aneed to collect dataregarding
pregnant women's daily habits and body conditions and to use
machine learning algorithmsto study these data. Such datawill
also be sent to acloud database and analyzed again to determine
the relationship between the amount of exercise and caloric
intake to help users balance exercise and diet. Moreover, it will
giveaprediction of the probability of usershaving other diseases
and their next-day blood glucose levels. The actual blood
glucose uploaded by the user will be used to make comparisons
with the predicted val ue to verify, correct, or improve our model.

Thedetailed process of app developmentisillustrated in Figure
2 and Figure 3.

The app interface is shown in Figure 4.

Post-market data collection

Collect the data of pregnant women
{users), which will undergo continuous
training on the model.

Goal:

disease status

Pregnant women input the data related to their
health status, the application can predict future

Providingthe personalized management for the user

https://www.jmir.org/2020/9/e21573

RenderX

JMed Internet Res 2020 | vol. 22 | iss. 9| €21573 | p. 6
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Shenet a

Figure 3. Structure of the app.
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blood glucose level
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Figure4. Interface of the app.
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Discussion

Principal Results

In this study, we described the use of 9 Al agorithms for the
diagnosis of GDM, utilizing only the age and fasting blood
glucose. Internal and external validation demonstrated that Al
algorithms provide strong or moderate evidence to rule in
diagnosing GDM under the same medical resource conditions.
Moreover, SVM retained high performance in accuracy,
specificity, PPV, positive likelihood ratio, and AUROC for
achieving the correct diagnosis, which suggests the potential of
the SVM agorithm to make highly accurate diagnosisdecisions.
NB & so provides moderate evidenceto rulein diagnosing GDM
under the same medical resource conditions.

Established diagnostic tools such as ADA 2011 criteria have
been used to decide whether or not a pregnant woman has GDM.
However, ADA 2011 criteriaare resource-demanding, and thus
may not be utilized in undevel oped areas in China. Moreover,
these diagnostic tests are both expensive and difficult for
preghant women given their body conditions during pregnancy.
Compared with those established diagnostic tools in the ADA
2011 criteria, the automatic diagnosis algorithm can provide a
real-time and accurate diagnosis with fewer medical resources.
Also, such algorithm-based diagnosis would be less expensive
sinceit requiresfewer equipment and professional medical staff.
As GDM puts a mgjor economic burden on the public health
care system, the government and health policymakers can
evaluate the economic benefits of our free app (which can
inform patients of their diagnoses and facilitate early medical
intervention, if needed) based on the results of this study and
seek international cooperation [21-26].

We believe that the future focus of Al in medicine should be
directed towards solving medical problems in
resource-insufficient areas, and this application will likely help
addressthe shortage of medical resources. In additionto GDM,
we believe that Al could be applied to other diseases.

Limitations

First, the development set all comes from one hospital, but the
external validation set has fixed this problem. Second, the data
isretrospective and therefore, not up to date. Third, the datasets
pertain to the Guangdong and Hong Kong populations, both in
regard to patient and system characteristics. Applicability of
our findings to other populations with distinct health care
systems may need further investigations. Fourth, there is no
algorithm that performswell in sensitivity compared with human
experts, illustrating that the capability of Al-diagnosing GDM
reguires improvement.

Since the scope of our dataset is relatively small, the next step
of our study will be to expand our internal dataset and repeat
the process to validate that SVM performs well in different
datasets. Databases from different jurisdictions can beincluded
inour test. Although SVM outperformed in overall criteria, NB
outperformed SVM according to Brier Score in both datasets.
Therefore, a further investigation into the differences between
SVM and NB will be carried out.

https://www.jmir.org/2020/9/e21573
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Comparison With Existing Literature

Diagnosis for initial GDM is performed to aid further
observation of preghant women and to guide interventions.
Several tools have been previously developed for diagnosing
and predicting diabetes mellitus. However, these tools require
detailed information of a pregnant woman, for example, all
important factors regulating the patient’s blood glucose level
[27], demographic information [18], or various blood glucose
vaues[28]. Therefore, they are not suitable for pregnant women
living in resource-limited rural areas. In contrast, our diagnosis
mechanism only requires the fasting glucose value and the
patient’s age, which enhances its application.

Contribution of the Application

A corefeature of theappisintelligent medical care. The process
of collecting, extracting, processing, and presenting data and
renewing the app are both automated. Therefore, it can save a
lot of time and effort while performing at high efficacy and
accuracy.

Moreover, if our app can be interconnected with wearable
devices, the app can monitor, in real-time, the heart rates and
blood pressure levels of pregnant women to inform them of
their physical conditions with data and illustrations, such as
whether they should continueto exerciseor rest. Such intelligent
health care will be beneficial for mothers-to-be in rural areas
where medical resources might be in short supply, reassuring
both pregnant women and their families.

Precision medicine is a modern branch of medicine that can
giveindividualized medical care according to apatient’sgenetic,
biomarker, or psychosocial characteristics. Precision medicine
remains expensive and difficult to deliver for most pregnant
womeninrural areas. However, our app providesthe possibility
for affordabl e precision medicine providers sinceit can respond
with medical advice and individualized arrangements of daily
exercises and diets.

The application also makes the | ong-distance medicine possible
for those pregnant women living in rural areas, where medical
services are insufficient and transportation is underdevel oped.
Doctors can track the patient’s glucose level and other health
information through the application in real-time and give
diagnosis and suggestions through real-time online
communication. The application can aso be used for urban
preghant women who are too busy to attend time-consuming
examinations.

In addition, through the realization of precision medicine and
long-distance medical care, this app can use available obstetric
resources to detect a relationship between health data and
preghant women'’s health to search for new ways to manage
risks during pregnancy and to provide more effective
management of GDM. In this way, our app can improve the
efficiency and quality of maternal health care, particularly in
rural areas, and help revitalize the current global medical system.

The Al-based app can promote long-distance medical care by
making timely and accurate diagnosisin low-resource conditions
while possibly lowering the cost of GDM diagnosis and
improving the quality and efficiency of maternal health carein
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rural areas. First, the introduction of this application will
effectively beimproving diagnostic rate of gestational diabetes
in low-resource areas and thus preventing high risks in
pregnancies. Second, Al makesintervention for high-risk women
possible. Third, Al application might be complementary
solutions to reduce diagnostic delay and delay of getting
prevention advice and possible treatment in underserved rural
GDM population globally.

Conclusion

Shen et al

an opportunity for the development of Al in the medical field.
In our study, 9 algorithms (SVM, random forest, AdaBoost,
kNN, NB, decisiontree, LR, XGBoost, and GBDT) weretested
to identify the best-performing algorithm in the diagnosis of
GDM. SVM performed best and was adopted to develop a
mobile app. Although further experiments are needed, we
believe the devel oped app will promote precision medicine and
long-distance medical care while improving the quality and
efficiency of maternal health care in rural areas.

There are many challenges associated with inadequate obstetric
services in rural areas around the world, yet this also provides
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