Published on in Vol 21, No 4 (2019): April

Preprints (earlier versions) of this paper are available at, first published .
Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature

Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature

Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature


  1. Özdemir V. The Big Picture on the “AI Turn” for Digital Health: The Internet of Things and Cyber-Physical Systems. OMICS: A Journal of Integrative Biology 2019;23(6):308 View
  2. Cresswell K, Callaghan M, Khan S, Sheikh Z, Mozaffar H, Sheikh A. Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review. Health Informatics Journal 2020;26(3):2138 View
  3. Martínez-Agüero S, Mora-Jiménez I, Lérida-García J, Álvarez-Rodríguez J, Soguero-Ruiz C. Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy 2019;21(6):603 View
  4. Dimeglio C, Becouarn G, Topart P, Bodin R, Buisson J, Ritz P. Weight Loss Trajectories After Bariatric Surgery for Obesity: Mathematical Model and Proof-of-Concept Study. JMIR Medical Informatics 2020;8(3):e13672 View
  5. Li M, Zhang J, Zou Y, Wang F, Chen B, Guan L, Wu Y. Models for the solubility calculation of a CO2/polymer system: A review. Materials Today Communications 2020;25:101277 View
  6. Triantafyllidis A, Kondylakis H, Votis K, Tzovaras D, Maglaveras N, Rahimi K. Features, outcomes, and challenges in mobile health interventions for patients living with chronic diseases: A review of systematic reviews. International Journal of Medical Informatics 2019;132:103984 View
  7. Or C, Liu K, So M, Cheung B, Yam L, Tiwari A, Lau Y, Lau T, Hui P, Cheng H, Tan J, Cheung M. Improving Self-Care in Patients With Coexisting Type 2 Diabetes and Hypertension by Technological Surrogate Nursing: Randomized Controlled Trial. Journal of Medical Internet Research 2020;22(3):e16769 View
  8. Dallora A, Kvist O, Berglund J, Ruiz S, Boldt M, Flodmark C, Anderberg P. Chronological Age Assessment in Young Individuals Using Bone Age Assessment Staging and Nonradiological Aspects: Machine Learning Multifactorial Approach. JMIR Medical Informatics 2020;8(9):e18846 View
  9. Raj Theeng Tamang M, Sharif M, Al-Bayatti A, Alfakeeh A, Omar Alsayed A. A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London. Symmetry 2020;12(5):866 View
  10. López Seguí F, Ander Egg Aguilar R, de Maeztu G, García-Altés A, García Cuyàs F, Walsh S, Sagarra Castro M, Vidal-Alaball J. Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: The Evaluation of Text Classification Algorithms Using Supervised Machine Learning. International Journal of Environmental Research and Public Health 2020;17(3):1093 View
  11. Bickman L. Improving Mental Health Services: A 50-Year Journey from Randomized Experiments to Artificial Intelligence and Precision Mental Health. Administration and Policy in Mental Health and Mental Health Services Research 2020;47(5):795 View
  12. Li X, Rozendaal M, Jansen K, Jonker C, Vermetten E. Things that help out: designing smart wearables as partners in stress management. AI & SOCIETY 2021;36(1):251 View
  13. Silva K, Lee W, Forbes A, Demmer R, Barton C, Enticott J. Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis. International Journal of Medical Informatics 2020;143:104268 View
  14. Figueroa C, DeMasi O, Hernandez-Ramos R, Aguilera A. Who Benefits Most from Adding Technology to Depression Treatment and How? An Analysis of Engagement with a Texting Adjunct for Psychotherapy. Telemedicine and e-Health 2021;27(1):39 View
  15. Moore R, Smith R, Liu Q. Using computational ethnography to enhance the curation of real-world data (RWD) for chronic pain and invisible disability use cases. ACM SIGACCESS Accessibility and Computing 2020;(127):1 View
  16. Montano I, Marques G, Alonso S, López-Coronado M, de la Torre Díez I. Predicting Absenteeism and Temporary Disability Using Machine Learning: a Systematic Review and Analysis. Journal of Medical Systems 2020;44(9) View
  17. Triantafyllidis A, Polychronidou E, Alexiadis A, Rocha C, Oliveira D, da Silva A, Freire A, Macedo C, Sousa I, Werbet E, Lillo E, Luengo H, Ellacuría M, Votis K, Tzovaras D. Computerized decision support and machine learning applications for the prevention and treatment of childhood obesity: A systematic review of the literature. Artificial Intelligence in Medicine 2020;104:101844 View
  18. Aguilera A, Figueroa C, Hernandez-Ramos R, Sarkar U, Cemballi A, Gomez-Pathak L, Miramontes J, Yom-Tov E, Chakraborty B, Yan X, Xu J, Modiri A, Aggarwal J, Jay Williams J, Lyles C. mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study. BMJ Open 2020;10(8):e034723 View
  19. Górriz J, Ramírez J, Ortíz A, Martínez-Murcia F, Segovia F, Suckling J, Leming M, Zhang Y, Álvarez-Sánchez J, Bologna G, Bonomini P, Casado F, Charte D, Charte F, Contreras R, Cuesta-Infante A, Duro R, Fernández-Caballero A, Fernández-Jover E, Gómez-Vilda P, Graña M, Herrera F, Iglesias R, Lekova A, de Lope J, López-Rubio E, Martínez-Tomás R, Molina-Cabello M, Montemayor A, Novais P, Palacios-Alonso D, Pantrigo J, Payne B, de la Paz López F, Pinninghoff M, Rincón M, Santos J, Thurnhofer-Hemsi K, Tsanas A, Varela R, Ferrández J. Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing 2020;410:237 View
  20. D'Souza M, Van Munster C, Dorn J, Dorier A, Kamm C, Steinheimer S, Dahlke F, Uitdehaag B, Kappos L, Johnson M. Autoencoder as a New Method for Maintaining Data Privacy While Analyzing Videos of Patients With Motor Dysfunction: Proof-of-Concept Study. Journal of Medical Internet Research 2020;22(5):e16669 View
  21. Dudchenko A, Ganzinger M, Kopanitsa G. Machine Learning Algorithms in Cardiology Domain: A Systematic Review. The Open Bioinformatics Journal 2020;13(1):25 View
  22. Adly A, Adly A, Adly M. Approaches Based on Artificial Intelligence and the Internet of Intelligent Things to Prevent the Spread of COVID-19: Scoping Review. Journal of Medical Internet Research 2020;22(8):e19104 View
  23. Ferrand J, Hockensmith R, Houghton R, Walsh-Buhi E. Evaluating Smart Assistant Responses for Accuracy and Misinformation Regarding Human Papillomavirus Vaccination: Content Analysis Study. Journal of Medical Internet Research 2020;22(8):e19018 View
  24. Sampa M, Hossain M, Hoque M, Islam R, Yokota F, Nishikitani M, Ahmed A. Blood Uric Acid Prediction With Machine Learning: Model Development and Performance Comparison. JMIR Medical Informatics 2020;8(10):e18331 View
  25. Muehlematter U, Daniore P, Vokinger K. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis. The Lancet Digital Health 2021;3(3):e195 View
  26. Tsanas A, Little M, Ramig L. Remote Assessment of Parkinson’s Disease Symptom Severity Using the Simulated Cellular Mobile Telephone Network. IEEE Access 2021;9:11024 View
  27. Dharmayat K, Woringer M, Mastellos N, Cole D, Car J, Ray S, Khunti K, Majeed A, Ray K, Seshasai S. Investigation of Cardiovascular Health and Risk Factors Among the Diverse and Contemporary Population in London (the TOGETHER Study): Protocol for Linking Longitudinal Medical Records. JMIR Research Protocols 2020;9(10):e17548 View
  28. Kelly D, Spaderna M, Hodzic V, Nair S, Kitchen C, Werkheiser A, Powell M, Liu F, Coppersmith G, Chen S, Resnik P. Blinded Clinical Ratings of Social Media Data are Correlated with In-Person Clinical Ratings in Participants Diagnosed with Either Depression, Schizophrenia, or Healthy Controls. Psychiatry Research 2020;294:113496 View
  29. Owais M, Arsalan M, Mahmood T, Kim Y, Park K. Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study. JMIR Medical Informatics 2020;8(12):e21790 View
  30. Figueroa C, Hernandez-Ramos R, Boone C, Gómez-Pathak L, Yip V, Luo T, Sierra V, Xu J, Chakraborty B, Darrow S, Aguilera A. A Text Messaging Intervention for Coping With Social Distancing During COVID-19 (StayWell at Home): Protocol for a Randomized Controlled Trial. JMIR Research Protocols 2021;10(1):e23592 View
  31. Figueroa C, Vittinghoff E, Aguilera A, Fukuoka Y. Differences in objectively measured daily physical activity patterns related to depressive symptoms in community dwelling women – mPED trial. Preventive Medicine Reports 2021;22:101325 View
  32. Molin N, Molin C, Dalpatadu R, Singh A. Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings. Machine Learning with Applications 2021;4:100022 View
  33. Yin J, Ngiam K, Teo H. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. Journal of Medical Internet Research 2021;23(4):e25759 View
  34. Bang C, Ahn J, Kim J, Kim Y, Choi I, Shin W. Establishing Machine Learning Models to Predict Curative Resection in Early Gastric Cancer with Undifferentiated Histology: Development and Usability Study. Journal of Medical Internet Research 2021;23(4):e25053 View
  35. Figueroa C, Deliu N, Chakraborty B, Modiri A, Xu J, Aggarwal J, Jay Williams J, Lyles C, Aguilera A. Daily Motivational Text Messages to Promote Physical Activity in University Students: Results From a Microrandomized Trial. Annals of Behavioral Medicine 2022;56(2):212 View
  36. Figueroa C, Aguilera A, Chakraborty B, Modiri A, Aggarwal J, Deliu N, Sarkar U, Jay Williams J, Lyles C. Adaptive learning algorithms to optimize mobile applications for behavioral health: guidelines for design decisions. Journal of the American Medical Informatics Association 2021;28(6):1225 View
  37. Sunarti S, Fadzlul Rahman F, Naufal M, Risky M, Febriyanto K, Masnina R. Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria 2021;35:S67 View
  38. Bulaj G, Clark J, Ebrahimi M, Bald E. From Precision Metapharmacology to Patient Empowerment: Delivery of Self-Care Practices for Epilepsy, Pain, Depression and Cancer Using Digital Health Technologies. Frontiers in Pharmacology 2021;12 View
  39. Hui C, McKinstry B, Fulton O, Buchner M, Pinnock H. Patients’ and Clinicians’ Perceived Trust in Internet-of-Things Systems to Support Asthma Self-management: Qualitative Interview Study. JMIR mHealth and uHealth 2021;9(7):e24127 View
  40. Luo G, Stone B, Sheng X, He S, Koebnick C, Nkoy F. Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis. JMIR Research Protocols 2021;10(5):e27065 View
  41. Shen H, Hu Y, Liu X, Jiang Z, Ye H, Takshe A, Al Dulaimi S. Application of machine learning risk prediction mathematical model in the diagnosis of Escherichia coli infection in patients with septic shock by cardiovascular color doppler ultrasound. Results in Physics 2021;26:104368 View
  42. Dhaliwal B, Neil-Sztramko S, Boston-Fisher N, Buckeridge D, Dobbins M. Assessing the Electronic Evidence System Needs of Canadian Public Health Professionals: Cross-sectional Study. JMIR Public Health and Surveillance 2021;7(9):e26503 View
  43. Ko M, Chen E, Agrawal A, Rajpurkar P, Avati A, Ng A, Basu S, Shah N. Improving hospital readmission prediction using individualized utility analysis. Journal of Biomedical Informatics 2021;119:103826 View
  44. Wolff J, Pauling J, Keck A, Baumbach J. Success Factors of Artificial Intelligence Implementation in Healthcare. Frontiers in Digital Health 2021;3 View
  45. Cruz M, Nieblas-Bedolla E, Young C, Feroze A, Williams J, Ellenbogen R, Levitt M. United States Medicolegal Progress and Innovation in Telemedicine in the Age of COVID-19: A Primer for Neurosurgeons. Neurosurgery 2021;89(3):364 View
  46. Mhasawade V, Zhao Y, Chunara R. Machine learning and algorithmic fairness in public and population health. Nature Machine Intelligence 2021;3(8):659 View
  47. Park G, Lee H, Lee M. Artificial Intelligence-based Healthcare Interventions: A Systematic Review. Korean Journal of Adult Nursing 2021;33(5):427 View
  48. Lafata K, Wang Y, Konkel B, Yin F, Bashir M. Radiomics: a primer on high-throughput image phenotyping. Abdominal Radiology 2021;47(9):2986 View
  49. Gargot T, Archambault D, Chetouani M, Cohen D, Johal W, Anzalone S. Automatic Assessment of Motor Impairments in Autism Spectrum Disorders: A Systematic Review. Cognitive Computation 2022;14(2):624 View
  50. Oyebode O, Fowles J, Steeves D, Orji R. Machine Learning Techniques in Adaptive and Personalized Systems for Health and Wellness. International Journal of Human–Computer Interaction 2023;39(9):1938 View
  51. Lekkas D, Price G, McFadden J, Jacobson N. The Application of Machine Learning to Online Mindfulness Intervention Data: a Primer and Empirical Example in Compliance Assessment. Mindfulness 2021;12(10):2519 View
  52. Benacek J, Martin-Key N, Barton-Owen G, Metcalfe T, Schei T, Sarah Han S, Olmert T, Cooper J, Eljasz P, Farrag L, Friend L, Bell E, Cowell D, Tomasik J, Bahn S. Personality, symptom, and demographic correlates of perceived efficacy of selective serotonin reuptake inhibitor monotherapy among current users with low mood: A data-driven approach. Journal of Affective Disorders 2021;295:1122 View
  53. Sengupta N, Sarode S, Sarode G, Ghone U. Scarcity of publicly available oral cancer image datasets for machine learning research. Oral Oncology 2022;126:105737 View
  54. Choi S, Lee E, Lee O, Kim S, Kang J, Lim J. Prediction models for early diagnosis of actinomycotic osteomyelitis of the jaw using machine learning techniques: a preliminary study. BMC Oral Health 2022;22(1) View
  55. Mathur V, Lustig C, Kaziunas E. Disordering Datasets. Proceedings of the ACM on Human-Computer Interaction 2022;6(CSCW2):1 View
  56. Tsanas A, Arora S. Data-Driven Subtyping of Parkinson’s Using Acoustic Analysis of Sustained Vowels and Cluster Analysis: Findings in the Parkinson’s Voice Initiative Study. SN Computer Science 2022;3(3) View
  57. Xiao R, Ding C, Hu X. Time Synchronization of Multimodal Physiological Signals through Alignment of Common Signal Types and Its Technical Considerations in Digital Health. Journal of Imaging 2022;8(5):120 View
  58. An R, Shen J, Xiao Y. Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies. Journal of Medical Internet Research 2022;24(12):e40589 View
  59. Overmars L, Niemantsverdriet M, Groenhof T, De Groot M, Hulsbergen-Veelken C, Van Solinge W, Musson R, Ten Berg M, Hoefer I, Haitjema S. A Wolf in Sheep’s Clothing: Reuse of Routinely Obtained Laboratory Data in Research. Journal of Medical Internet Research 2022;24(11):e40516 View
  60. Cozzolino C, Buja A, Rugge M, Miatton A, Zorzi M, Vecchiato A, Del Fiore P, Tropea S, Brazzale A, Damiani G, dall’Olmo L, Rossi C, Mocellin S. Machine learning to predict overall short-term mortality in cutaneous melanoma. Discover Oncology 2023;14(1) View
  61. Chand S, Zhang Y. Learning from machines to close the gap between funding and expenditure in the Australian National Disability Insurance Scheme. International Journal of Information Management Data Insights 2022;2(1):100077 View
  62. Jhou M, Chen M, Lee T, Yang C, Chiu Y, Lu C. A Hybrid Risk Factor Evaluation Scheme for Metabolic Syndrome and Stage 3 Chronic Kidney Disease Based on Multiple Machine Learning Techniques. Healthcare 2022;10(12):2496 View
  63. Zhou Q, Chen Z, Cao Y, Peng S. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. npj Digital Medicine 2021;4(1) View
  64. Liao P, Chen M, Jhou M, Chen T, Yang C, Lu C. Integrating Health Data-Driven Machine Learning Algorithms to Evaluate Risk Factors of Early Stage Hypertension at Different Levels of HDL and LDL Cholesterol. Diagnostics 2022;12(8):1965 View
  65. Liu W, Li M, Wu S, Tong W, Li A, Sun B, Liu Z, Liu J. Using Machine Learning Methods to Predict Bone Metastases in Breast Infiltrating Ductal Carcinoma Patients. Frontiers in Public Health 2022;10 View
  66. Junaid S, Imam A, Abdulkarim M, Surakat Y, Balogun A, Kumar G, Shuaibu A, Garba A, Sahalu Y, Mohammed A, Mohammed T, Abdulkadir B, Abba A, Iliyasu Kakumi N, Hashim A. Recent Advances in Artificial Intelligence and Wearable Sensors in Healthcare Delivery. Applied Sciences 2022;12(20):10271 View
  67. Pooni R, Lee T. The Emerging Telehealth Landscape in Pediatric Rheumatology. Rheumatic Disease Clinics of North America 2022;48(1):259 View
  68. Huang H, Hsieh S, Chen M, Jhou M, Liu T, Shen H, Yang C, Hung C, Yu Y, Lu C. Machine Learning Predictive Models for Evaluating Risk Factors Affecting Sperm Count: Predictions Based on Health Screening Indicators. Journal of Clinical Medicine 2023;12(3):1220 View
  69. Lewkowicz D, Slosarek T, Wernicke S, Winne A, Wohlbrandt A, Bottinger E. Digital Therapeutic Care and Decision Support Interventions for People With Low Back Pain: Systematic Review. JMIR Rehabilitation and Assistive Technologies 2021;8(4):e26612 View
  70. Triantafyllidis A, Kondylakis H, Katehakis D, Kouroubali A, Koumakis L, Marias K, Alexiadis A, Votis K, Tzovaras D. Deep Learning in mHealth for Cardiovascular Disease, Diabetes, and Cancer: Systematic Review. JMIR mHealth and uHealth 2022;10(4):e32344 View
  71. Ferreira A, Santos L, Sabino E, Ribeiro A, Oliveira-da Silva L, Damasceno R, D’Angelo M, Nunes M, Haikal D, Ramos A. Two-year death prediction models among patients with Chagas Disease using machine learning-based methods. PLOS Neglected Tropical Diseases 2022;16(4):e0010356 View
  72. Yan K, Li T, Marques J, Gao J, Fong S. A review on multimodal machine learning in medical diagnostics. Mathematical Biosciences and Engineering 2023;20(5):8708 View
  73. Jiang F, Zhou H, Shen H. Identification of Critical Biomarkers and Immune Infiltration in Rheumatoid Arthritis Based on WGCNA and LASSO Algorithm. Frontiers in Immunology 2022;13 View
  74. Henriksen H, Knudsen M, Carlsen M, Hjartåker A, Blomhoff R. A Short Digital Food Frequency Questionnaire (DIGIKOST-FFQ) Assessing Dietary Intake and Other Lifestyle Factors Among Norwegians: Qualitative Evaluation With Focus Group Interviews and Usability Testing. JMIR Formative Research 2022;6(11):e35933 View
  75. Kang L, Chen J, Huang J, Zhang T, Xu J. Identifying epilepsy based on machine‐learning technique with diffusion kurtosis tensor. CNS Neuroscience & Therapeutics 2022;28(3):354 View
  76. Stogiannos N, Bougias H, Georgiadou E, Leandrou S, Papavasileiou P. Analysis of radiomic features derived from post-contrast T1-weighted images and apparent diffusion coefficient (ADC) maps for breast lesion evaluation: A retrospective study. Radiography 2023;29(2):355 View
  77. Ganesan J, Azar A, Alsenan S, Kamal N, Qureshi B, Hassanien A. Deep Learning Reader for Visually Impaired. Electronics 2022;11(20):3335 View
  78. Wang H, Wang S, Zhou L, Wong K. Machine Learning-Based MRI LAVA Dynamic Enhanced Scanning for the Diagnosis of Hilar Lesions. Computational and Mathematical Methods in Medicine 2022;2022:1 View
  79. Hietbrink E, Middelweerd A, van Empelen P, Preuhs K, Konijnendijk A, Oude Nijeweme-d’Hollosy W, Schrijver L, Laverman G, Vollenbroek-Hutten M. A Digital Lifestyle Coach (E-Supporter 1.0) to Support People With Type 2 Diabetes: Participatory Development Study. JMIR Human Factors 2023;10:e40017 View
  80. Dionisio M, de Souza Junior S, Paula F, Pellanda P. The role of digital transformation in improving the efficacy of healthcare: A systematic review. The Journal of High Technology Management Research 2023;34(1):100442 View
  81. Sun C, Tang Y, Liu T, Lu C. An Integrated Machine Learning Scheme for Predicting Mammographic Anomalies in High-Risk Individuals Using Questionnaire-Based Predictors. International Journal of Environmental Research and Public Health 2022;19(15):9756 View
  82. Monarca I, Cibrian F, Chavez E, Tentori M. Using a small dataset to classify strength-interactions with an elastic display: a case study for the screening of autism spectrum disorder. International Journal of Machine Learning and Cybernetics 2023;14(1):151 View
  83. Faro J, Chen J, Flahive J, Nagawa C, Orvek E, Houston T, Allison J, Person S, Smith B, Blok A, Sadasivam R. Effect of a Machine Learning Recommender System and Viral Peer Marketing Intervention on Smoking Cessation. JAMA Network Open 2023;6(1):e2250665 View
  84. Mariki M, Mkoba E, Mduma N. Combining Clinical Symptoms and Patient Features for Malaria Diagnosis: Machine Learning Approach. Applied Artificial Intelligence 2022;36(1) View
  85. Swed S, Alibrahim H, Elkalagi N, Nasif M, Rais M, Nashwan A, Aljabali A, Elsayed M, Sawaf B, Albuni M, Battikh E, Elsharif L, Ahmed S, Ahmed E, Othman Z, Alsaleh A, Shoib S. Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Syria: A cross-sectional online survey. Frontiers in Artificial Intelligence 2022;5 View
  86. Figueroa C, Gomez-Pathak L, Khan I, Williams J, Lyles C, Aguilera A. Ratings and experiences in using a mobile application to increase physical activity among university students: implications for future design. Universal Access in the Information Society 2023 View
  87. Berdutin V, Abaeva O, Romanova T, Romanov S. Achievements and prospects for the application of artificial intelligence technologies in medicine: an overview. Part 1. Sociology of Medicine 2023;21(1):83 View
  88. Camp E, Quon R, Sajatovic M, Briggs F, Brownrigg B, Janevic M, Meisenhelter S, Steimel S, Testorf M, Kiriakopoulos E, Mazanec M, Fraser R, Johnson E, Jobst B. Supervised machine learning to predict reduced depression severity in people with epilepsy through epilepsy self-management intervention. Epilepsy & Behavior 2022;127:108548 View
  89. Mohsin M, Ali S, Shamim S, Ahmad A. A GIS-based novel approach for suitable sanitary landfill site selection using integrated fuzzy analytic hierarchy process and machine learning algorithms. Environmental Science and Pollution Research 2022;29(21):31511 View
  90. Ha J, Park H. Keyword Network Analysis and Topic Modeling of News Articles Related to Artificial Intelligence and Nursing. Journal of Korean Academy of Nursing 2023;53(1):55 View
  91. Pelly M, Fatehi F, Liew D, Verdejo-Garcia A. Artificial intelligence for secondary prevention of myocardial infarction: A qualitative study of patient and health professional perspectives. International Journal of Medical Informatics 2023;173:105041 View
  92. Liu Z, Wang S, Zhang Y, Feng Y, Liu J, Zhu H. Artificial Intelligence in Food Safety: A Decade Review and Bibliometric Analysis. Foods 2023;12(6):1242 View
  93. Brankovic A, Hendrie G, Baird D, Khanna S. Predicting Disengagement to Better Support Outcomes in a Web-Based Weight Loss Program Using Machine Learning Models: Cross-Sectional Study. Journal of Medical Internet Research 2023;25:e43633 View
  94. Yu D, Xiang B. Discovering topics and trends in the field of Artificial Intelligence: Using LDA topic modeling. Expert Systems with Applications 2023;225:120114 View
  95. Kerr J, Naegelin M, Benk M, v Wangenheim F, Meins E, Viganò E, Ferrario A. Investigating Employees’ Concerns and Wishes Regarding Digital Stress Management Interventions With Value Sensitive Design: Mixed Methods Study. Journal of Medical Internet Research 2023;25:e44131 View
  97. Kaushik P. Artificial Intelligence Accelerated Transformation in The Healthcare Industry. Amity Journal of Professional Practices 2023;3(01) View
  98. van der Vegt A, Scott I, Dermawan K, Schnetler R, Kalke V, Lane P. Implementation frameworks for end-to-end clinical AI: derivation of the SALIENT framework. Journal of the American Medical Informatics Association 2023;30(9):1503 View
  99. Münch M, Röder M, Heilig S, Raab C, Schleif F. Static and adaptive subspace information fusion for indefinite heterogeneous proximity data. Neurocomputing 2023;555:126635 View
  100. Susanto A, Lyell D, Widyantoro B, Berkovsky S, Magrabi F. Effects of machine learning-based clinical decision support systems on decision-making, care delivery, and patient outcomes: a scoping review. Journal of the American Medical Informatics Association 2023;30(12):2050 View
  101. Salah M, Ismail Z, Abdellatif S. Selecting an appropriate machine-learning model for perovskite solar cell datasets. Materials for Renewable and Sustainable Energy 2023;12(3):187 View
  102. Allen B, Neill D, Schell R, Ahern J, Hallowell B, Krieger M, Jent V, Goedel W, Cartus A, Yedinak J, Pratty C, Marshall B, Cerdá M. Translating Predictive Analytics for Public Health Practice: A Case Study of Overdose Prevention in Rhode Island. American Journal of Epidemiology 2023;192(10):1659 View
  103. Hurvitz N, Ilan Y. The Constrained-Disorder Principle Assists in Overcoming Significant Challenges in Digital Health: Moving from “Nice to Have” to Mandatory Systems. Clinics and Practice 2023;13(4):994 View
  104. Mehrpour O, Hoyte C, Al Masud A, Biswas A, Schimmel J, Nakhaee S, Nasr M, Delva-Clark H, Goss F. Deep learning neural network derivation and testing to distinguish acute poisonings. Expert Opinion on Drug Metabolism & Toxicology 2023;19(6):367 View
  105. Lee C, Tan N, Goh K, Chang Z, Liew T. Factors associated with potentially inappropriate prescribing among older persons in primary care settings: Systematic review. Proceedings of Singapore Healthcare 2023;32 View
  106. Ekpezu A, Wiafe I, Oinas-Kukkonen H. Predicting Adherence to Behavior Change Support Systems Using Machine Learning: Systematic Review. JMIR AI 2023;2:e46779 View
  107. Huang H, Lu C, Jhou M, Liu T, Yang C, Hsieh S, Yang W, Chang H, Chen M. Using a Decision Tree Algorithm Predictive Model for Sperm Count Assessment and Risk Factors in Health Screening Population. Risk Management and Healthcare Policy 2023;Volume 16:2469 View
  108. Muench F, Madden S, Oommen S, Forthal S, Srinagesh A, Stadler G, Kuerbis A, Leeman R, Suffoletto B, Baumel A, Haslip C, Vadhan N, Morgenstern J. Automated, tailored adaptive mobile messaging to reduce alcohol consumption in help‐seeking adults: A randomized controlled trial. Addiction 2024;119(3):530 View
  109. Yi S, Zhang C, Li M, Qu T, Wang J. Machine learning and experiments identifies SPINK1 as a candidate diagnostic and prognostic biomarker for hepatocellular carcinoma. Discover Oncology 2023;14(1) View
  110. Chang C, Yeh J, Chiu H, Liu T, Chen Y, Jhou M, Lu C. Assessing the length of hospital stay for patients with myasthenia gravis based on the data mining MARS approach. Frontiers in Neurology 2023;14 View
  111. Ojurongbe T, Afolabi H, Bashiru K, Sule W, Akinde S, Ojurongbe O, Adegoke N. Prediction of malaria positivity using patients’ demographic and environmental features and clinical symptoms to complement parasitological confirmation before treatment. Tropical Diseases, Travel Medicine and Vaccines 2023;9(1) View
  112. Wu T, Chen J, Liu T, Yu C, Jhou M, Lu C. Identifying and Exploring the Impact Factors for Intraocular Pressure Prediction in Myopic Children with Atropine Control Utilizing Multivariate Adaptive Regression Splines. Journal of Personalized Medicine 2024;14(1):125 View
  113. Ntovoli A, Anifanti M, Koukouvou G, Mitropoulos A, Kouidi E, Alexandris K. The Attitudes of Patients with Cardiovascular Diseases towards Online Exercise with the Mobile Monitoring of Their Health-Related Vital Signs. Sports 2024;12(2):47 View
  114. Ni Y, Lu Y, Jing F, Wang Q, Xie Y, He X, Wu D, Tan R, Tucker J, Yan X, Ong J, Zhang Q, Jiang H, Dai W, Huang L, Mei W, Zhou Y, Tang W. A Machine Learning Model for Identifying Sexual Health Influencers to Promote the Secondary Distribution of HIV Self-Testing Among Gay, Bisexual, and Other Men Who Have Sex With Men in China: Quasi-Experimental Study. JMIR Public Health and Surveillance 2024;10:e50656 View
  115. Sinaci A, Gencturk M, Alvarez-Romero C, Laleci Erturkmen G, Martinez-Garcia A, Escalona-Cuaresma M, Parra-Calderon C. Privacy-preserving federated machine learning on FAIR health data: A real-world application. Computational and Structural Biotechnology Journal 2024;24:136 View
  116. Ciftci R, Secgin Y, Oner Z, Toy S, Oner S. Age Estimation Using Machine Learning Algorithms with Parameters Obtained from X-ray Images of the Calcaneus. Nigerian Journal of Clinical Practice 2024;27(2):209 View
  117. Nadendla H, Etha P, Chowriappa P. Overcoming Confounding Bias in Causal Discovery Using Minimum Redundancy and Maximum Relevancy Constraint. IEEE Access 2024;12:33057 View
  118. Grijalvo M, Ordieres-Meré J, Villalba-Díez J, Aladro-Benito Y, Martín-Ávila G, Simon-Hurtado A, Vivaracho-Pascual C. Sufficiency for PSS tracking gait disorders in multiple sclerosis: A managerial perspective. Heliyon 2024;10(9):e30001 View
  119. Li J, Wang Z, Wang T. Machine-learning prediction of a novel diagnostic model using mitochondria-related genes for patients with bladder cancer. Scientific Reports 2024;14(1) View
  120. Baird A, Xia Y. Precision Digital Health. Business & Information Systems Engineering 2024 View
  121. Tsanas A, Triantafyllidis A, Tsiknakis M. Guest Editorial Pervasive Computing in Healthcare. IEEE Journal of Biomedical and Health Informatics 2024;28(5):2459 View

Books/Policy Documents

  1. Kubassova O, Shaikh F, Melus C, Mahler M. Precision Medicine and Artificial Intelligence. View
  2. Joel L, Doorsamy W, Paul B. Enhanced Telemedicine and e-Health. View
  3. Saini J, Dutta M, Marques G. Internet of Things for Indoor Air Quality Monitoring. View
  4. Kriksciuniene D, Sakalauskas V, Ognjanović I, Šendelj R. Intelligent Systems for Sustainable Person-Centered Healthcare. View
  5. Awotunde J, Chakraborty C, AbdulRaheem M, Jimoh R, Oladipo I, Bhoi A. Implementation of Smart Healthcare Systems using AI, IoT, and Blockchain. View
  6. Sakly H, Said M, Seekins J, Tagina M. Multidisciplinarity and Interdisciplinarity in Health. View
  7. Sulaiman M, Håkansson A, Karlsen R. ICT for Health, Accessibility and Wellbeing. View
  8. Schmitter-Edgecombe M, Luna C, Cook D. Positive Neuropsychology. View
  9. Miller S, Moos W, Munk B, Munk S, Hart C, Spellmeyer D. Managing the Drug Discovery Process. View
  10. Poonam , Batra N. Advanced Network Technologies and Intelligent Computing. View
  11. Erskine J, Fauquet-Alekhine P. The Palgrave Handbook of Occupational Stress. View
  12. Sestino A, D’Angelo A. Personalized Medicine Meets Artificial Intelligence. View