Published on in Vol 20 , No 10 (2018) :October
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/10754, first published
.

Journals
- Olsen M, Stechuchak K, Hung A, Oddone E, Damschroder L, Edelman D, Maciejewski M. A data-driven examination of which patients follow trial protocol. Contemporary Clinical Trials Communications 2020;19:100631 View
- Oehler C, Görges F, Rogalla M, Rummel-Kluge C, Hegerl U. Efficacy of a Guided Web-Based Self-Management Intervention for Depression or Dysthymia: Randomized Controlled Trial With a 12-Month Follow-Up Using an Active Control Condition. Journal of Medical Internet Research 2020;22(7):e15361 View
- Mukhiya S, Wake J, Inal Y, Lamo Y. Adaptive Systems for Internet-Delivered Psychological Treatments. IEEE Access 2020;8:112220 View
- Fürer L, Schenk N, Roth V, Steppan M, Schmeck K, Zimmermann R. Supervised Speaker Diarization Using Random Forests: A Tool for Psychotherapy Process Research. Frontiers in Psychology 2020;11 View
- Robila M, Robila S. Applications of Artificial Intelligence Methodologies to Behavioral and Social Sciences. Journal of Child and Family Studies 2020;29(10):2954 View
- Schover L, Strollo S, Stein K, Fallon E, Smith T. Effectiveness trial of an online self-help intervention for sexual problems after cancer. Journal of Sex & Marital Therapy 2020;46(6):576 View
- Bischoff T, Hynes K, Tambling R, Kingzette A. Marriage and Family Therapists’ Reporting of Telehealth Use on Practice Websites during COVID-19: A Linguistic Analysis. The American Journal of Family Therapy 2022;50(2):159 View
- Mukhiya S, Wake J, Inal Y, Pun K, Lamo Y. Adaptive Elements in Internet-Delivered Psychological Treatment Systems: Systematic Review. Journal of Medical Internet Research 2020;22(11):e21066 View
- Bendig E, Bauereiß N, Buntrock C, Habibović M, Ebert D, Baumeister H. Lessons learned from an attempted randomized-controlled feasibility trial on “WIDeCAD” - An internet-based depression treatment for people living with coronary artery disease (CAD). Internet Interventions 2021;24:100375 View
- Humphries S, Wallert J, Norlund F, Wallin E, Burell G, von Essen L, Held C, Olsson E. Internet-Based Cognitive Behavioral Therapy for Patients Reporting Symptoms of Anxiety and Depression After Myocardial Infarction: U-CARE Heart Randomized Controlled Trial Twelve-Month Follow-up. Journal of Medical Internet Research 2021;23(5):e25465 View
- Chekroud A, Bondar J, Delgadillo J, Doherty G, Wasil A, Fokkema M, Cohen Z, Belgrave D, DeRubeis R, Iniesta R, Dwyer D, Choi K. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 2021;20(2):154 View
- Zhang Q, Hu Q, Li Y, Sun Y, He J, Qiu M, Zhang J, Liang Y, Han Y. Efficacy of CPET Combined with Systematic Education of Cardiac Rehabilitation After PCI: A Real-World Evaluation in ACS Patients. Advances in Therapy 2021;38(9):4836 View
- Yao L, Wang Z, Gu H, Zhao X, Chen Y, Liu L. Prediction of Chinese clients’ satisfaction with psychotherapy by machine learning. Frontiers in Psychiatry 2023;14 View
- Graf R, Zeldovich M, Friedrich S. Comparing linear discriminant analysis and supervised learning algorithms for binary classification—A method comparison study. Biometrical Journal 2022 View
- Pizga A, Karatzanos E, Tsikrika S, Gioni V, Vasileiadis I, Nanas S, Kordoutis P. Psychosocial Interventions to Enhance Treatment Adherence to Lifestyle Changes in Cardiovascular Disease: A Review of the Literature 2011-2021. European Journal of Environment and Public Health 2022;6(1):em0102 View
- Lüdtke T, Rüegg N, Moritz S, Berger T, Westermann S. Insight and the number of completed modules predict a reduction of positive symptoms in an Internet-based intervention for people with psychosis. Psychiatry Research 2021;306:114223 View
- Linardon J, Fuller‐Tyszkiewicz M, Shatte A, Greenwood C. An exploratory application of machine learning methods to optimize prediction of responsiveness to digital interventions for eating disorder symptoms. International Journal of Eating Disorders 2022;55(6):845 View
- Lee K, Ham B. Machine Learning on Early Diagnosis of Depression. Psychiatry Investigation 2022;19(8):597 View
- Linnet J, Hertz S, Jensen E, Runge E, Tarp K, Holmberg T, Mathiasen K, Lichtenstein M. Days between sessions predict attrition in text-based internet intervention of Binge Eating Disorder. Internet Interventions 2023;31:100607 View
- Fife D, D’Onofrio J. Common, uncommon, and novel applications of random forest in psychological research. Behavior Research Methods 2022 View
- Tornero-Costa R, Martinez-Millana A, Azzopardi-Muscat N, Lazeri L, Traver V, Novillo-Ortiz D. Methodological and Quality Flaws in the Use of Artificial Intelligence in Mental Health Research: Systematic Review. JMIR Mental Health 2023;10:e42045 View
- Wallert J, Boberg J, Kaldo V, Mataix-Cols D, Flygare O, Crowley J, Halvorsen M, Ben Abdesslem F, Boman M, Andersson E, Hentati Isacsson N, Ivanova E, Rück C. Predicting remission after internet-delivered psychotherapy in patients with depression using machine learning and multi-modal data. Translational Psychiatry 2022;12(1) View
- Linnet J, Jensen E, Runge E, Hansen M, Hertz S, Mathiasen K, Lichtenstein M. Text based internet intervention of Binge Eating Disorder (BED): Words per message is associated with treatment adherence. Internet Interventions 2022;28:100538 View
- Torres R, Zurita C, Mellado D, Nicolis O, Saavedra C, Tuesta M, Salinas M, Bertini A, Pedemonte O, Querales M, Salas R. Predicting Cardiovascular Rehabilitation of Patients with Coronary Artery Disease Using Transfer Feature Learning. Diagnostics 2023;13(3):508 View
- Dai R, Kannampallil T, Zhang J, Lv N, Ma J, Lu C. Multi-Task Learning for Randomized Controlled Trials. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2022;6(2):1 View