Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Monday, March 11, 2019 at 4:00 PM to 4:30 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 20.10.14 in Vol 16, No 10 (2014): October

This paper is in the following e-collection/theme issue:

Works citing "A Case Study of the New York City 2012-2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.3416):

(note that this is only a small subset of citations)

  1. Little RJA, West BT, Boonstra PS, Hu J. Measures of the Degree of Departure from Ignorable Sample Selection. Journal of Survey Statistics and Methodology 2019;
    CrossRef
  2. Șerban O, Thapen N, Maginnis B, Hankin C, Foot V. Real-time processing of social media with SENTINEL: A syndromic surveillance system incorporating deep learning for health classification. Information Processing & Management 2019;56(3):1166
    CrossRef
  3. Weitzman ER, Magane KM, Chen P, Amiri H, Naimi TS, Wisk LE. Online Searching and Social Media to Detect Alcohol Use Risk at Population Scale. American Journal of Preventive Medicine 2019;
    CrossRef
  4. Puspitasari I, Firdauzy A. Characterizing Consumer Behavior in Leveraging Social Media for E-Patient and Health-Related Activities. International Journal of Environmental Research and Public Health 2019;16(18):3348
    CrossRef
  5. Cumbraos-Sánchez MJ, Hermoso R, Iñiguez D, Paño-Pardo JR, Allende Bandres M, Latorre Martinez MP. Qualitative and quantitative evaluation of the use of Twitter as a tool of antimicrobial stewardship. International Journal of Medical Informatics 2019;131:103955
    CrossRef
  6. Tulloch JS, Vivancos R, Christley RM, Radford AD, Warner JC. Mapping tweets to a known disease epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland. Journal of Biomedical Informatics: X 2019;4:100060
    CrossRef
  7. Lee M, Jung I. Modified spatial scan statistics using a restricted likelihood ratio for ordinal outcome data. Computational Statistics & Data Analysis 2019;133:28
    CrossRef
  8. Masri S, Jia J, Li C, Zhou G, Lee M, Yan G, Wu J. Use of Twitter data to improve Zika virus surveillance in the United States during the 2016 epidemic. BMC Public Health 2019;19(1)
    CrossRef
  9. Zhou L, Zhang D, Yang CC, Wang Y. Harnessing social media for health information management. Electronic Commerce Research and Applications 2018;27:139
    CrossRef
  10. Hu Y. Geo-text data and data-driven geospatial semantics. Geography Compass 2018;12(11):e12404
    CrossRef
  11. Hampson G, Towse A, Dreitlein WB, Henshall C, Pearson SD. Real-world evidence for coverage decisions: opportunities and challenges. Journal of Comparative Effectiveness Research 2018;7(12):1133
    CrossRef
  12. Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review. Health Information & Libraries Journal 2018;35(2):91
    CrossRef
  13. Hu H, Wang H, Wang F, Langley D, Avram A, Liu M. Prediction of influenza-like illness based on the improved artificial tree algorithm and artificial neural network. Scientific Reports 2018;8(1)
    CrossRef
  14. Chen S, Xu Q, Buchenberger J, Bagavathi A, Fair G, Shaikh S, Krishnan S. Dynamics of Health Agency Response and Public Engagement in Public Health Emergency: A Case Study of CDC Tweeting Patterns During the 2016 Zika Epidemic. JMIR Public Health and Surveillance 2018;4(4):e10827
    CrossRef
  15. Barros JM, Duggan J, Rebholz-Schuhmann D. Disease mentions in airport and hospital geolocations expose dominance of news events for disease concerns. Journal of Biomedical Semantics 2018;9(1)
    CrossRef
  16. Wakamiya S, Kawai Y, Aramaki E. Twitter-Based Influenza Detection After Flu Peak via Tweets With Indirect Information: Text Mining Study. JMIR Public Health and Surveillance 2018;4(3):e65
    CrossRef
  17. Lu FS, Hou S, Baltrusaitis K, Shah M, Leskovec J, Sosic R, Hawkins J, Brownstein J, Conidi G, Gunn J, Gray J, Zink A, Santillana M. Accurate Influenza Monitoring and Forecasting Using Novel Internet Data Streams: A Case Study in the Boston Metropolis. JMIR Public Health and Surveillance 2018;4(1):e4
    CrossRef
  18. Stock K. Mining location from social media: A systematic review. Computers, Environment and Urban Systems 2018;71:209
    CrossRef
  19. Musa I, Park H, Munkhdalai L, Ryu K. Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization. Sustainability 2018;10(10):3414
    CrossRef
  20. Oldroyd RA, Morris MA, Birkin M. Identifying Methods for Monitoring Foodborne Illness: Review of Existing Public Health Surveillance Techniques. JMIR Public Health and Surveillance 2018;4(2):e57
    CrossRef
  21. Paul MJ, Dredze M. Social Monitoring for Public Health. Synthesis Lectures on Information Concepts, Retrieval, and Services 2017;9(5):1
    CrossRef
  22. McGough SF, Brownstein JS, Hawkins JB, Santillana M, Althouse B. Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data. PLOS Neglected Tropical Diseases 2017;11(1):e0005295
    CrossRef
  23. Rabarison KM, Croston MA, Englar NK, Bish CL, Flynn SM, Johnson CC. Measuring Audience Engagement for Public Health Twitter Chats: Insights From #LiveFitNOLA. JMIR Public Health and Surveillance 2017;3(2):e34
    CrossRef
  24. Geofrey A, Kipanyula MJ, Fue K, Sanga C. Understanding Strategies for Implementing Integrated Information Systems for Rabies Surveillance. International Journal of User-Driven Healthcare 2017;7(1):13
    CrossRef
  25. Hartley DM, Giannini CM, Wilson S, Frieder O, Margolis PA, Kotagal UR, White DL, Connelly BL, Wheeler DS, Tadesse DG, Macaluso M, Nishiura H. Coughing, sneezing, and aching online: Twitter and the volume of influenza-like illness in a pediatric hospital. PLOS ONE 2017;12(7):e0182008
    CrossRef
  26. Nguyen Q, Meng H, Li D, Kath S, McCullough M, Paul D, Kanokvimankul P, Nguyen T, Li F. Social media indicators of the food environment and state health outcomes. Public Health 2017;148:120
    CrossRef
  27. Meng H, Kath S, Li D, Nguyen QC, Giraud-Carrier C. National substance use patterns on Twitter. PLOS ONE 2017;12(11):e0187691
    CrossRef
  28. Brown B, Smeeth L, van Staa T, Buchan I. Better care through better use of data in GP–patient partnerships. British Journal of General Practice 2017;67(655):54
    CrossRef
  29. Ozdikis O, Oğuztüzün H, Karagoz P. A survey on location estimation techniques for events detected in Twitter. Knowledge and Information Systems 2017;52(2):291
    CrossRef
  30. Gruebner O, Lowe SR, Sykora M, Shankardass K, Subramanian SV, Galea S, Olson DR. A novel surveillance approach for disaster mental health. PLOS ONE 2017;12(7):e0181233
    CrossRef
  31. Burke-Garcia A, Stanton CA. A tale of two tools: Reliability and feasibility of social media measurement tools examining e-cigarette twitter mentions. Informatics in Medicine Unlocked 2017;8:8
    CrossRef
  32. Brownstein JS, Chu S, Marathe A, Marathe MV, Nguyen AT, Paolotti D, Perra N, Perrotta D, Santillana M, Swarup S, Tizzoni M, Vespignani A, Vullikanti AKS, Wilson ML, Zhang Q. Combining Participatory Influenza Surveillance with Modeling and Forecasting: Three Alternative Approaches. JMIR Public Health and Surveillance 2017;3(4):e83
    CrossRef
  33. Gruebner O, Sykora M, Lowe SR, Shankardass K, Trinquart L, Jackson T, Subramanian SV, Galea S. Mental health surveillance after the terrorist attacks in Paris. The Lancet 2016;387(10034):2195
    CrossRef
  34. Tozzi AE, Gesualdo F, D’Ambrosio A, Pandolfi E, Agricola E, Lopalco P. Can Digital Tools Be Used for Improving Immunization Programs?. Frontiers in Public Health 2016;4
    CrossRef
  35. Yang J, Tsou M, Jung C, Allen C, Spitzberg BH, Gawron JM, Han S. Social media analytics and research testbed (SMART): Exploring spatiotemporal patterns of human dynamics with geo-targeted social media messages. Big Data & Society 2016;3(1):205395171665291
    CrossRef
  36. Shin S, Kim T, Seo D, Sohn CH, Kim S, Ryoo SM, Lee Y, Lee JH, Kim WY, Lim KS, Olson DR. Correlation between National Influenza Surveillance Data and Search Queries from Mobile Devices and Desktops in South Korea. PLOS ONE 2016;11(7):e0158539
    CrossRef
  37. Thapen N, Simmie D, Hankin C, Gillard J, Danforth CM. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response. PLOS ONE 2016;11(5):e0155417
    CrossRef
  38. Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I, Brownstein JS. Cloud-based Electronic Health Records for Real-time, Region-specific Influenza Surveillance. Scientific Reports 2016;6(1)
    CrossRef
  39. Househ M. Communicating Ebola through social media and electronic news media outlets: A cross-sectional study. Health Informatics Journal 2016;22(3):470
    CrossRef
  40. Kunkle S, Christie G, Yach D, El-Sayed AM. The Importance of Computer Science for Public Health Training: An Opportunity and Call to Action. JMIR Public Health and Surveillance 2016;2(1):e10
    CrossRef
  41. Agarwal V, Zhang L, Zhu J, Fang S, Cheng T, Hong C, Shah NH. Impact of Predicting Health Care Utilization Via Web Search Behavior: A Data-Driven Analysis. Journal of Medical Internet Research 2016;18(9):e251
    CrossRef
  42. Gunn JE, Shah SN. Big data and opportunities for injury surveillance. Injury Prevention 2016;22(Suppl 1):i3
    CrossRef
  43. Simonsen L, Gog JR, Olson D, Viboud C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. Journal of Infectious Diseases 2016;214(suppl 4):S380
    CrossRef
  44. Sharpe JD, Hopkins RS, Cook RL, Striley CW. Evaluating Google, Twitter, and Wikipedia as Tools for Influenza Surveillance Using Bayesian Change Point Analysis: A Comparative Analysis. JMIR Public Health and Surveillance 2016;2(2):e161
    CrossRef
  45. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS, Salathé M. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLOS Computational Biology 2015;11(10):e1004513
    CrossRef
  46. Yin Z, Fabbri D, Rosenbloom ST, Malin B. A Scalable Framework to Detect Personal Health Mentions on Twitter. Journal of Medical Internet Research 2015;17(6):e138
    CrossRef
  47. Katsuki T, Mackey TK, Cuomo R. Establishing a Link Between Prescription Drug Abuse and Illicit Online Pharmacies: Analysis of Twitter Data. Journal of Medical Internet Research 2015;17(12):e280
    CrossRef
  48. Domnich A, Panatto D, Signori A, Lai PL, Gasparini R, Amicizia D, Olson DR. Age-Related Differences in the Accuracy of Web Query-Based Predictions of Influenza-Like Illness. PLOS ONE 2015;10(5):e0127754
    CrossRef
  49. Mollema L, Harmsen IA, Broekhuizen E, Clijnk R, De Melker H, Paulussen T, Kok G, Ruiter R, Das E. Disease Detection or Public Opinion Reflection? Content Analysis of Tweets, Other Social Media, and Online Newspapers During the Measles Outbreak in the Netherlands in 2013. Journal of Medical Internet Research 2015;17(5):e128
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.3416)

:
  1. Samaras L, García-Barriocanal E, Sicilia M. Innovation in Health Informatics. 2020. :39
    CrossRef
  2. Geofrey AM, Kipanyula MJ, Fue KG, Sanga CA. Veterinary Science. 2018. chapter 8:159
    CrossRef
  3. Tonkin E. Working with Text. 2016. :23
    CrossRef