Published on in Vol 25 (2023)

This is a member publication of Charite - Universitaetsmedizin Berlin, Medizinische Bibliothek, Germany

Preprints (earlier versions) of this paper are available at, first published .
What Does DALL-E 2 Know About Radiology?

What Does DALL-E 2 Know About Radiology?

What Does DALL-E 2 Know About Radiology?


  1. Skulmowski A. Ethical issues of educational virtual reality. Computers & Education: X Reality 2023;2:100023 View
  2. Ali R, Tang O, Connolly I, Abdulrazeq H, Mirza F, Lim R, Johnston B, Groff M, Williamson T, Svokos K, Libby T, Shin J, Gokaslan Z, Doberstein C, Zou J, Asaad W. Demographic Representation in 3 Leading Artificial Intelligence Text-to-Image Generators. JAMA Surgery 2024;159(1):87 View
  3. Choudhry H, Toor U, Sanchez A, Mian S. Perception of Race and Sex Diversity in Ophthalmology by Artificial Intelligence: A DALL E-2 Study. Clinical Ophthalmology 2023;Volume 17:2889 View
  4. Noel G. Evaluating AI‐powered text‐to‐image generators for anatomical illustration: A comparative study. Anatomical Sciences Education 2023 View
  5. Zhang P, Kamel Boulos M. Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet 2023;15(9):286 View
  6. Kumar A, Burr P, Young T. Using AI Text-to-Image Generation to Create Novel Illustrations for Medical Education: Current Limitations as Illustrated by Hypothyroidism and Horner Syndrome. JMIR Medical Education 2024;10:e52155 View
  7. Ellis R. The Education Leadership Challenges for Universities in a Postdigital Age. Postdigital Science and Education 2024 View
  8. Umer F, Adnan N. Generative artificial intelligence: synthetic datasets in dentistry. BDJ Open 2024;10(1) View
  9. Traboco L. Class‐Rheum for AI: Reflections from a Filipino Rheumatologist and Health Informatics graduate student. International Journal of Rheumatic Diseases 2024;27(3) View
  10. Phillips C, Jiao J, Clubb E. Testing the Capability of AI Art Tools for Urban Design. IEEE Computer Graphics and Applications 2024;44(2):37 View
  11. da Mota Santana L, do Nascimento-Júnior E, Floresta L, Alves Ê, dos Santos Barreto M, dos Santos J, Valadares C, Roque-Torres G, Gopalsamy R, Martins-Filho P, Borges L. Revolutionizing oral and maxillofacial surgery: The role of DALL-E's AI-generated realistic images in enhancing surgical precision. Journal of Stomatology, Oral and Maxillofacial Surgery 2024:101874 View
  12. Sapkota R, Ahmed D, Karkee M. Synthetic Meets Authentic: Leveraging Text-to-Image Generated Datasets for Apple Detection in Orchard Environments. SSRN Electronic Journal 2024 View
  13. Han Q, Wang H, Wang J. Multi‐Mode/Signal Biosensors: Electrochemical Integrated Sensing Techniques. Advanced Functional Materials 2024 View
  14. Temsah M, Alhuzaimi A, Almansour M, Aljamaan F, Alhasan K, Batarfi M, Altamimi I, Alharbi A, Alsuhaibani A, Alwakeel L, Alzahrani A, Alsulaim K, Jamal A, Khayat A, Alghamdi M, Halwani R, Khan M, Al-Eyadhy A, Nazer R. Art or Artifact: Evaluating the Accuracy, Appeal, and Educational Value of AI-Generated Imagery in DALL·E 3 for Illustrating Congenital Heart Diseases. Journal of Medical Systems 2024;48(1) View
  15. Oettl F, Pareek A, Winkler P, Zsidai B, Pruneski J, Senorski E, Kopf S, Ley C, Herbst E, Oeding J, Grassi A, Hirschmann M, Musahl V, Samuelsson K, Tischer T, Feldt R. A practical guide to the implementation of AI in orthopaedic research, Part 6: How to evaluate the performance of AI research?. Journal of Experimental Orthopaedics 2024;11(3) View
  16. Currie G, Hawk K, Rohren E. Generative Artificial Intelligence Biases, Limitations and Risks in Nuclear Medicine: An Argument for Appropriate Use Framework and Recommendations. Seminars in Nuclear Medicine 2024 View