Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/28209, first published .
Predicting Patient Deterioration: A Review of Tools in the Digital Hospital Setting

Predicting Patient Deterioration: A Review of Tools in the Digital Hospital Setting

Predicting Patient Deterioration: A Review of Tools in the Digital Hospital Setting

Journals

  1. Shen Y, Zhang L, Wu P, Huang Y, Xin S, Zhang Q, Zhao S, Sun H, Lei G, Zhang T, Han W, Wang Z, Jiang J, Yu X. Construction and evaluation of networks among multiple postoperative complications. Computer Methods and Programs in Biomedicine 2023;232:107439 View
  2. Scquizzato T, Gamberini L, Semeraro F. How technology can save lives in cardiac arrest. Current Opinion in Critical Care 2022;28(3):250 View
  3. Brankovic A, Hassanzadeh H, Good N, Mann K, Khanna S, Abdel-Hafez A, Cook D. Explainable machine learning for real-time deterioration alert prediction to guide pre-emptive treatment. Scientific Reports 2022;12(1) View
  4. Malycha J, Bacchi S, Redfern O. Artificial intelligence and clinical deterioration. Current Opinion in Critical Care 2022;28(3):315 View
  5. Malycha J, Andersen C, Redfern O, Peake S, Subbe C, Dykes L, Phillips A, Ludbrook G, Young D, Watkinson P, Flabouris A, Jones D. Protocol describing a systematic review and mixed methods consensus process to define the deteriorated ward patient. BMJ Open 2022;12(9):e057614 View
  6. Zahradka N, Geoghan S, Watson H, Goldberg E, Wolfberg A, Wilkes M. Assessment of Remote Vital Sign Monitoring and Alarms in a Real-World Healthcare at Home Dataset. Bioengineering 2022;10(1):37 View
  7. Saab A, Abi Khalil C, Jammal M, Saikali M, Lamy J. Early Prediction of All-Cause Clinical Deterioration in General Wards Patients: Development and Validation of a Biomarker-Based Machine Learning Model Derived From Rapid Response Team Activations. Journal of Patient Safety 2022;18(6):578 View
  8. Jahandideh S, Ozavci G, Sahle B, Kouzani A, Magrabi F, Bucknall T. Evaluation of machine learning-based models for prediction of clinical deterioration: A systematic literature review. International Journal of Medical Informatics 2023;175:105084 View
  9. Pollack M, Trujillo Rivera E, Morizono H, Patel A. Clinical Instability Is a Sign of Severity of Illness: A Cohort Study. Pediatric Critical Care Medicine 2023;24(9):e425 View
  10. Al-Kofahi M, Spicer A, Schaefer R, Uhl A, Churpek M, Govindan S. National Early Warning Score Deployment in a Veterans Affairs Facility: A Quality Improvement Initiative and Analysis. American Journal of Medical Quality 2023;38(3):147 View
  11. Monfredi O, Andris R, Lake D, Moorman J. A novel predictive analytics score reflecting accumulating disease burden—an investigation of the cumulative CoMET score. Physiological Measurement 2023;44(5):055005 View
  12. ARSLAN A. Sağlıkta Kalite Kapsamında Dijital Bir Hastanede Müşteri Memnuniyeti Araştırması. Alanya Akademik Bakış 2023;7(3):1123 View
  13. Beard J, Sethi A, Jiao W, Hyatt H, Yapici H, Erslon M, Overdyk F. Cost savings through continuous vital sign monitoring in the medical-surgical unit. Journal of Medical Economics 2023;26(1):760 View
  14. van Rossum M, Bekhuis R, Wang Y, Hegeman J, Folbert E, Vollenbroek-Hutten M, Kalkman C, Kouwenhoven E, Hermens H. Early Warning Scores to Support Continuous Wireless Vital Sign Monitoring for Complication Prediction in Patients on Surgical Wards: Retrospective Observational Study. JMIR Perioperative Medicine 2023;6:e44483 View
  15. Wan Y, Wright M, McFarland M, Dishman D, Nies M, Rush A, Madaras-Kelly K, Jeppesen A, Del Fiol G. Information displays for automated surveillance algorithms of in-hospital patient deterioration: a scoping review. Journal of the American Medical Informatics Association 2023;31(1):256 View
  16. Sharabi A, Abutbul E, Grossbard E, Martsiano Y, Berman A, Kassif-Lerner R, Hakim H, Liber P, Zoubi A, Barkai G, Segal G. Six-Lead Electrocardiography Enables Identification of Rhythm and Conduction Anomalies of Patients in the Telemedicine-Based, Hospital-at-Home Setting: A Prospective Validation Study. Sensors 2023;23(20):8464 View
  17. Cimr D, Busovsky D, Fujita H, Studnicka F, Cimler R, Hayashi T. Classification of health deterioration by geometric invariants. Computer Methods and Programs in Biomedicine 2023;239:107623 View
  18. van der Vegt A, Campbell V, Mitchell I, Malycha J, Simpson J, Flenady T, Flabouris A, Lane P, Mehta N, Kalke V, Decoyna J, Es’haghi N, Liu C, Scott I. Systematic review and longitudinal analysis of implementing Artificial Intelligence to predict clinical deterioration in adult hospitals: what is known and what remains uncertain. Journal of the American Medical Informatics Association 2024;31(2):509 View
  19. Holder A, Khanna A, Scott M, Rossetti S, Rinehart J, Linn D, Weichert J, Dellinger R. A Delphi Process to Identify Relevant Outcomes That May Be Associated With a Predictive Analytic Tool to Detect Hemodynamic Deterioration in the Intensive Care Unit. Cureus 2023 View
  20. Batterbury A, Douglas C, Coyer F. Patient outcomes following medical emergency team review on general wards: Development of predictive models. Journal of Clinical Nursing 2024 View