Published on in Vol 23, No 2 (2021): February
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/10969, first published
.

Journals
- Mamidi T, Tran-Nguyen T, Melvin R, Worthey E. Development of An Individualized Risk Prediction Model for COVID-19 Using Electronic Health Record Data. Frontiers in Big Data 2021;4 View
- McElhinney J, Catacutan M, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Frontiers in Microbiology 2022;13 View
- Zhou Y, Koyuncu C, Lu C, Grobholz R, Katz I, Madabhushi A, Janowczyk A. Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer. Medical Image Analysis 2023;84:102702 View
- Reimer T, Pistorius S. Review and Analysis of Tumour Detection and Image Quality Analysis in Experimental Breast Microwave Sensing. Sensors 2023;23(11):5123 View
- Das S, Bhuyan R, Baro B, Das U, Sharma R, Bayan S. Flexible triboelectric nanogenerators of Au-g-C3N4/ZnO hierarchical nanostructures for machine learning enabled body movement detection. Nanotechnology 2023;34(44):445501 View
- Davis S, Matheny M, Balu S, Sendak M. A framework for understanding label leakage in machine learning for health care. Journal of the American Medical Informatics Association 2023;31(1):274 View
- Zinnel L, Bentil S. Convolutional neural networks for traumatic brain injury classification and outcome prediction. Health Sciences Review 2023;9:100126 View
- Huang A, Huang S. Shapely additive values can effectively visualize pertinent covariates in machine learning when predicting hypertension. The Journal of Clinical Hypertension 2023;25(12):1135 View
- Kapoor S, Cantrell E, Peng K, Pham T, Bail C, Gundersen O, Hofman J, Hullman J, Lones M, Malik M, Nanayakkara P, Poldrack R, Raji I, Roberts M, Salganik M, Serra-Garcia M, Stewart B, Vandewiele G, Narayanan A. REFORMS: Consensus-based Recommendations for Machine-learning-based Science. Science Advances 2024;10(18) View
- Nolin-Lapalme A, Corbin D, Tastet O, Avram R, Hussin J. Advancing Fairness in Cardiac Care: Strategies for Mitigating Bias in Artificial Intelligence Models Within Cardiology. Canadian Journal of Cardiology 2024;40(10):1907 View
- Varga D. Critical Analysis of Data Leakage in WiFi CSI-Based Human Action Recognition Using CNNs. Sensors 2024;24(10):3159 View
- Bernett J, Blumenthal D, Grimm D, Haselbeck F, Joeres R, Kalinina O, List M. Guiding questions to avoid data leakage in biological machine learning applications. Nature Methods 2024;21(8):1444 View
- Hosseiniyan Khatibi S, Dimaano N, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. Plant Communications 2024;5(12):101078 View
- Varga D. Mitigating Data Leakage in a WiFi CSI Benchmark for Human Action Recognition. Sensors 2024;24(24):8201 View
- Yalin N. Revisiting Neuroimaging Endophenotypes in the Era of Machine Learning: The Key Role of Clinical Measures in Identifying Risk for Bipolar Disorder. Biological Psychiatry 2025;97(3):215 View
- Arman S, Yang T, Shahed S, Mazroa A, Attiah A, Mohaisen L. A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions. Computers, Materials & Continua 2024;78(2):2087 View
- Dijkstra P, Greenhalgh T, Mekki Y, Morley J. How to read a paper involving artificial intelligence (AI). BMJ Medicine 2025;4(1):e001394 View
- Starcke J, Spadafora J, Spadafora J, Spadafora P, Toma M. The Effect of Data Leakage and Feature Selection on Machine Learning Performance for Early Parkinson’s Disease Detection. Bioengineering 2025;12(8):845 View
- Matsuno da Frota L, Hasegawa M, de Andrade Jacinto P. Machine learning and infant mortality: predictive models for health policy in Brazil. Applied Economics 2025:1 View
- Apicella A, Isgrò F, Prevete R. Don’t push the button! Exploring data leakage risks in machine learning and transfer learning. Artificial Intelligence Review 2025;58(11) View
- Gardiner B, Lee S, Snell G, Westall G, Peleg A. Response to Letter: Global Immune Biomarkers and Donor Serostatus Can Predict Cytomegalovirus Infection Within Seropositive Lung Transplant Recipients. Transplantation 2025;109(11):e669 View
- Tombaz M, Pfeifer N, Ehnert S, Nüssler A. Target leakage and the use of diagnostic variables in diabetes prediction models. Nutrition & Diabetes 2025;15(1) View
