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Applications of machine learning algorithms to predict the
incidence of health outcomes have an enormous potential to
improve clinical practice and lower health care costs [1].
Machine learning is a subset of artificial intelligence that uses
data to improve decisions through experience, which is
especially promising in a data-driven world. Dr Ye and
colleagues’ article on hypertension incidence prediction in the
Journal of Medical Internet Research adds to this literature [2],
but its potential contribution and applicability are hindered by
a major flaw.

The objective of the study was to “develop and validate
prospectively a risk prediction model of incident essential
hypertension within the following year.” The authors follow
good prediction protocols by applying a high-performing
machine learning algorithm (XGBoost) and by validating the
results on unseen data from the following year. The algorithm
attained a very high area under the curve (AUC) value of 0.870
for incidence prediction of hypertension in the following year.

The authors follow this impressive result by commenting on
some of the most important predictive variables, such as
demographic features, diagnosed chronic diseases, and mental
illness. The ranking of the variables that were most important
for the predictive performance of hypertension is included in a
multimedia appendix; however, the above-mentioned variables

are not listed near the top. Of the six most important variables,
five were: lisinopril, hydrochlorothiazide, enalapril maleate,
amlodipine besylate, and losartan potassium. All of these are
popular antihypertensive drugs.

Data leakage occurs when one or more features used to train
the algorithm has hidden within itself the result of the outcome,
and is considered one of the most frequent mistakes in machine
learning [3]. This is different from predictive importance, that
is, the relative effect of each variable in increasing or decreasing
the expected outcome, as it usually comes after the outcome.
Therefore, it is a consequence of the outcome that is being
predicted and not the other way around.

A classic example from machine learning textbooks is the
inclusion of the ID number of the patient as a predictor. While
this should not have predictive importance if randomly assigned,
it is common that patients coming from the same hospital have
similar ID numbers in multicenter data sets. In the case of cancer
prediction, for example, machine learning algorithms will learn
that similar ID numbers that come from oncology hospitals have
a higher probability of cancer.

As an example, we used real data to test the effect of including
mechanical ventilation to predict intensive care unit (ICU)
admission among patients with COVID-19 [4]. This is another
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example of data leakage, as mechanical ventilation usually only
occurs after ICU admission and should not be used to predict
its risk. Figure 1 shows the decrease in the prediction metrics
for ICU admission with the exclusion of mechanical ventilation

as a predictor, with the area under the ROC (receiver operating
characteristic) curve decreasing from 0.76 to 0.64, and precision
from 0.49 to 0.17.

Figure 1. Performance metrics for the prediction of intensive care unit (ICU) admission with and without the use of mechanical ventilation as a predictor.

By including the use of antihypertensive drugs as predictors for
hypertension incidence in the following year, Dr Ye and
colleagues’work opens the possibility that the machine learning
algorithm will focus on predicting those already with
hypertension but did not have this information on their medical
record at baseline. While this would work for a prediction
competition, where data science teams compete to produce the
best predictive model such as in a Kaggle challenge [5], it is
not of particular scientific or clinical interest. In the case of the
latter, just one variable (the use of a hypertension drug) is
sufficient for physicians to infer the presence of hypertension,
while for the former, the knowledge of this being a highly

predictable event (as measured by the AUC) is severely
impaired.

In order to identify the presence of data leakage in prediction
studies, it is important to have a conceptual pathway of how the
predictors longitudinally affect the outcome variable, as there
is no statistical method that is capable of pointing out the
presence of data leakage. Improving the predictive performance
of specific data sets for different diseases is an important new
field in epidemiology and data science. The authors can still
contribute to this literature by providing the new AUC of the
prediction after addressing the data leakage issue.
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Editorial Notice
The corresponding author of “Prediction of Incident Hypertension Within the Next Year: Prospective Study Using Statewide
Electronic Health Records and Machine Learning” did not respond to our invitation to reply to this commentary.
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