Published on in Vol 23, No 11 (2021): November

Preprints (earlier versions) of this paper are available at, first published .
The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review

The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review

The Role of Machine Learning in Diagnosing Bipolar Disorder: Scoping Review


  1. Wen Z, Zhang Y, Feng M, Wu Y, Fu C, Deng K, Lin Q, Liu B. Identification of discriminative neuroimaging markers for patients on hemodialysis with insomnia: a fractional amplitude of low frequency fluctuation-based machine learning analysis. BMC Psychiatry 2023;23(1) View
  2. Wu J, Wu J, Guo R, Chu L, Li J, Zhang S, Ren H. The decreased connectivity in middle temporal gyrus can be used as a potential neuroimaging biomarker for left temporal lobe epilepsy. Frontiers in Psychiatry 2022;13 View
  3. Highland D, Zhou G. A review of detection techniques for depression and bipolar disorder. Smart Health 2022;24:100282 View
  4. Crema C, Attardi G, Sartiano D, Redolfi A. Natural language processing in clinical neuroscience and psychiatry: A review. Frontiers in Psychiatry 2022;13 View
  5. Latifian M, Raheb G, Uddin R, Abdi K, Alikhani R. The process of stigma experience in the families of people living with bipolar disorder: a grounded theory study. BMC Psychology 2022;10(1) View
  6. Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz J, Khozeimeh F, Zhang Y, Nahavandi S, Acharya U. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Computers in Biology and Medicine 2022;146:105554 View
  7. Vazquez S, Stadlan Z, Lapow J, Feldstein E, Shah S, Das A, Naftchi A, Spirollari E, Thaker A, Kazim S, Dominguez J, Patel N, Kurian C, Chong J, Mayer S, Kaur G, Gandhi C, Bowers C, Al-Mufti F. Frailty and outcomes in lacunar stroke. Journal of Stroke and Cerebrovascular Diseases 2023;32(2):106942 View
  8. Kondo F, Whitehead J, Corbalán F, Beaulieu S, Armony J. Emotion regulation in bipolar disorder type-I: multivariate analysis of fMRI data. International Journal of Bipolar Disorders 2023;11(1) View
  9. Shi Y, Bai L. Density Peaks Clustering Based on Candidate Center and Multi Assignment Policies. IEEE Access 2023;11:57158 View
  10. Giotakos O. Editorial: From brain priorities to brain modeling. Frontiers in Psychiatry 2023;14 View
  11. Tseng Y, Yang M. Using Kernel Density Estimation in Knowledge Distillation to Construct the Prediction Model for Bipolar Disorder Patients. Applied Sciences 2023;13(18):10280 View
  12. Bouazizi M, Zheng C, Yang S, Ohtsuki T. Dementia Detection from Speech: What If Language Models Are Not the Answer?. Information 2023;15(1):2 View
  13. Chen L, Xue J, Zhao L, He Y, Fu S, Ma X, Yu W, Tang Y, Wang Y, Gao Z. Lysophosphatidylcholine acyltransferase level predicts the severity and prognosis of patients with community-acquired pneumonia: a prospective multicenter study. Frontiers in Immunology 2024;14 View
  14. Shao X, Chen Z, Yu J, Lu F, Chen S, Xu J, Yao Y, Liu B, Yang P, Jiang Q, Hu B. Ultralow-cost piezoelectric sensor constructed by thermal compression bonding for long-term biomechanical signal monitoring in chronic mental disorders. Nanoscale 2024;16(6):2974 View
  15. Huang Y, Zhang J, He K, Mo X, Yu R, Min J, Zhu T, Ma Y, He X, Lv F, Lei D, Liu M. Innovative Neuroimaging Biomarker Distinction of Major Depressive Disorder and Bipolar Disorder through Structural Connectome Analysis and Machine Learning Models. Diagnostics 2024;14(4):389 View
  16. Kaur I, Kamini , Kaur J, Gagandeep , Singh S, Gupta U. Enhancing explainability in predicting mental health disorders using human–machine interaction. Multimedia Tools and Applications 2024 View

Books/Policy Documents

  1. Magboo V, Magboo M. Well-Being in the Information Society: When the Mind Breaks. View
  2. Kulkarni H, MacAvaney S, Goharian N, Frieder O. Artificial Intelligence for Personalized Medicine. View
  3. Gao H, Chen L, Zhou Y, Chi K, Chan S. Pattern Recognition and Computer Vision. View