Published on in Vol 21, No 5 (2019): May

Proactive Suicide Prevention Online (PSPO): Machine Identification and Crisis Management for Chinese Social Media Users With Suicidal Thoughts and Behaviors

Proactive Suicide Prevention Online (PSPO): Machine Identification and Crisis Management for Chinese Social Media Users With Suicidal Thoughts and Behaviors

Proactive Suicide Prevention Online (PSPO): Machine Identification and Crisis Management for Chinese Social Media Users With Suicidal Thoughts and Behaviors

Journals

  1. Soron T, Shariful Islam S. Suicide on Facebook-the tales of unnoticed departure in Bangladesh. Global Mental Health 2020;7 View
  2. Liu J. Need to establish a new adolescent suicide prevention programme in South Korea. General Psychiatry 2020;33(4):e100200 View
  3. Liu X, Huang J, Yu N, Li Q, Zhu T. Mediation Effect of Suicide-Related Social Media Use Behaviors on the Association Between Suicidal Ideation and Suicide Attempt: Cross-Sectional Questionnaire Study. Journal of Medical Internet Research 2020;22(4):e14940 View
  4. Wang P, Yan Y, Si Y, Zhu G, Zhan X, Wang J, Pan R. Classification of Proactive Personality: Text Mining Based on Weibo Text and Short-Answer Questions Text. IEEE Access 2020;8:97370 View
  5. Teo A, Strange W, Bui R, Dobscha S, Ono S. Responses to Concerning Posts on Social Media and Their Implications for Suicide Prevention Training for Military Veterans: Qualitative Study. Journal of Medical Internet Research 2020;22(10):e22076 View
  6. Oh B, Yun J, Yeo E, Kim D, Kim J, Cho B. Prediction of Suicidal Ideation among Korean Adults Using Machine Learning: A Cross-Sectional Study. Psychiatry Investigation 2020;17(4):331 View
  7. Figueroa Saavedra C, Otzen Hernández T, Alarcón Godoy C, Ríos Pérez A, Frugone Salinas D, Lagos Hernández R. Association between suicidal ideation and acoustic parameters of university students’ voice and speech: a pilot study. Logopedics Phoniatrics Vocology 2021;46(2):55 View
  8. Castillo-Sánchez G, Marques G, Dorronzoro E, Rivera-Romero O, Franco-Martín M, De la Torre-Díez I. Suicide Risk Assessment Using Machine Learning and Social Networks: a Scoping Review. Journal of Medical Systems 2020;44(12) View
  9. Sarsam S, Al-Samarraie H, Alzahrani A, Alnumay W, Smith A. A lexicon-based approach to detecting suicide-related messages on Twitter. Biomedical Signal Processing and Control 2021;65:102355 View
  10. Hazaa Y, Almaqtari F, Al-Swidi A, Tan A. Factors Influencing Crisis Management: A systematic review and synthesis for future research. Cogent Business & Management 2021;8(1) View
  11. Ji S, Pan S, Li X, Cambria E, Long G, Huang Z. Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications. IEEE Transactions on Computational Social Systems 2021;8(1):214 View
  12. Stirling E, Willcox J, Ong K, Forsyth A. Social media analytics in nutrition research: a rapid review of current usage in investigation of dietary behaviours. Public Health Nutrition 2021;24(6):1193 View
  13. Chen J, Wang Y. Social Media Use for Health Purposes: Systematic Review. Journal of Medical Internet Research 2021;23(5):e17917 View
  14. Liu X, Liu X. Online Suicide Identification in the Framework of Rhetorical Structure Theory (RST). Healthcare 2021;9(7):847 View
  15. Orsolini L, Appignanesi C, Pompili S, Volpe U. The role of digital tools in providing youth mental health: results from an international multi-center study. International Review of Psychiatry 2022;34(7-8):809 View
  16. Liu X, Zhou S, Chi X. How Do Team-Level and Individual-Level Linguistic Styles Affect Patients’ Emotional Well-Being—Evidence from Online Doctor Teams. International Journal of Environmental Research and Public Health 2023;20(3):1915 View
  17. Wulz A, Law R, Wang J, Wolkin A. Leveraging data science to enhance suicide prevention research: a literature review. Injury Prevention 2022;28(1):74 View
  18. Metzler H, Baginski H, Niederkrotenthaler T, Garcia D. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach. Journal of Medical Internet Research 2022;24(8):e34705 View
  19. Arias F, Zambrano Nunez M, Guerra-Adames A, Tejedor-Flores N, Vargas-Lombardo M. Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics. IEEE Access 2022;10:74850 View
  20. SU Y, LIU M, ZHAO N, LIU X, ZHU T. Identifying psychological indexes based on social media data: A machine learning method. Advances in Psychological Science 2021;29(4):571 View
  21. Homan S, Gabi M, Klee N, Bachmann S, Moser A, Duri' M, Michel S, Bertram A, Maatz A, Seiler G, Stark E, Kleim B. Linguistic features of suicidal thoughts and behaviors: A systematic review. Clinical Psychology Review 2022;95:102161 View
  22. Boggs J, Kafka J. A Critical Review of Text Mining Applications for Suicide Research. Current Epidemiology Reports 2022;9(3):126 View
  23. Zerrouki K, Hamou R, Rahmoun A. Spotted Hyenas Approach ‎for Suicidal Prediction. International Journal of Organizational and Collective Intelligence 2022;12(1):1 View
  24. Gupta M, Gupta N, Robinson M. A panorama of the medicolegal aspects of suicide assessments: integrating multiple vantage points in improving quality, safety, and risk management. CNS Spectrums 2023;28(3):282 View
  25. Liu X, Wen Y, Zhu T. Ecological recognition of self-esteem leveraged by video-based gait. Frontiers in Psychiatry 2022;13 View
  26. Keasar V, Sznitman S, Baumel A. Suicide Prevention Outreach on Social Media Delivered by Trained Volunteers. Crisis 2023;44(3):247 View
  27. Chen W, Boggero A, Del Puente G, Olcese M, Prestia D, Jahrami H, Chalghaf N, Guelmami N, Azaiez F, Bragazzi N. Googling for Suicide–Content and Quality Analysis of Suicide-Related Websites: Thematic Analysis. JMIR Formative Research 2021;5(11):e29146 View
  28. Han N, Li S, Huang F, Wen Y, Wang X, Liu X, Li L, Zhu T. Sensing Psychological Well-being Using Social Media Language: Prediction Model Development Study. Journal of Medical Internet Research 2023;25:e41823 View
  29. Yang B, Xia L, Liu L, Nie W, Liu Q, Li X, Ao M, Wang X, Xie Y, Liu Z, Huang Y, Huang Z, Gong X, Luo D. A Suicide Monitoring and Crisis Intervention Strategy Based on Knowledge Graph Technology for “Tree Hole” Microblog Users in China. Frontiers in Psychology 2021;12 View
  30. Han N, Li S, Huang F, Wen Y, Su Y, Li L, Liu X, Zhu T. How social media expression can reveal personality. Frontiers in Psychiatry 2023;14 View
  31. Gupta M, Ramar D, Vijayan R, Gupta N. Artificial Intelligence Tools for Suicide Prevention in Adolescents and Young Adults. Adolescent Psychiatry 2022;12(1):1 View
  32. Liu X, Liu M, Li H, Mo L, Liu X. Transition from Depression to Suicidal Attempt in Young Adults: The Mediation Effect of Self-Esteem and Interpersonal Needs. International Journal of Environmental Research and Public Health 2022;19(21):14342 View
  33. Xu X. Detecting Suicide Ideation in the Online Environment: A Survey of Methods and Challenges. IEEE Transactions on Computational Social Systems 2022;9(3):679 View
  34. Alghamdi A, Pileggi S, Sohaib O. Social Media Analysis to Enhance Sustainable Knowledge Management: A Concise Literature Review. Sustainability 2023;15(13):9957 View
  35. Schoene A, Bojanić L, Nghiem M, Hunt I, Ananiadou S. Classifying Suicide-Related Content and Emotions on Twitter Using Graph Convolutional Neural Networks. IEEE Transactions on Affective Computing 2023;14(3):1791 View
  36. Zhao Y, Liu D, Wan C, Liu X, Nie J, Liu J. JMS-QA: A Joint Hierarchical Architecture for Mental Health Question Answering. IEEE/ACM Transactions on Audio, Speech, and Language Processing 2024;32:352 View
  37. Liu G, Liu K. Ethical dilemmas and legal ambiguity in China: a chain mediation model linking suicide rumination, legitimization, and acceptance among acutely-ill adults. Frontiers in Psychology 2024;14 View
  38. Li C, Xiao Y, Chen T, Zhu S. Epidemiological characteristics and behaviors of online broadcast suicidality in China: implications for targeted prevention strategies. Frontiers in Public Health 2024;12 View
  39. Hopkins D, Mazzer K, Rickwood D, Fashoto S. Technology in Suicide Prevention: Fears and Functionality for Crisis Supporters. Human Behavior and Emerging Technologies 2024;2024(1) View
  40. Hernández Bello L, De la Hoz Restrepo F, Cogollo Milanés Z. Intervenciones preventivas para la conducta suicida en estudiantes: revisión sistemática. Revista Facultad Nacional de Salud Pública 2024;42 View
  41. Almeida A, Patton T, Conway M, Gupta A, Strathdee S, Bórquez A. The Use of Natural Language Processing Methods in Reddit to Investigate Opioid Use: Scoping Review. JMIR Infodemiology 2024;4:e51156 View
  42. Atmakuru A, Shahini A, Chakraborty S, Seoni S, Salvi M, Hafeez-Baig A, Rashid S, Tan R, Barua P, Molinari F, Acharya U. Artificial Intelligence-based Suicide Prevention and Prediction: A Systematic Review (2019-2023). Information Fusion 2024:102673 View

Books/Policy Documents

  1. Cheng X, Wang X, Ouyang T, Feng Z. Neurological and Mental Disorders. View
  2. Huang Y, Liu X, Zhu T. Human Centered Computing. View
  3. Sinha N. Enhanced Telemedicine and e-Health. View
  4. Chanda K, Ghosh A, Dey S, Bose R, Roy S. Smart IoT for Research and Industry. View
  5. Roza T, Salgado T, Machado C, Watts D, Bebber J, Freitas T, Rabelo-da-Ponte F, Kapczinski F, Passos I. Digital Mental Health. View
  6. Guo L, Xia L, Huang X, Fu Y, Li X, Zhou S, Zhao C, Yang B. Health Information Science. View
  7. Verma A, Harper M, Assi S, Al-Hamid A, Yousif M, Mustafina J, Ismail N, Al-Jumeily OBE D. Data Science and Emerging Technologies. View
  8. Ho K, Park S, Lai M, Krakovsky S. Artificial Intelligence in Medicine. View