Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 14.06.16 in Vol 18, No 6 (2016): Jun

This paper is in the following e-collection/theme issue:

Works citing "Mining Health App Data to Find More and Less Successful Weight Loss Subgroups"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.5473):

(note that this is only a small subset of citations)

  1. Hendrie GA, Hussain MS, Brindal E, James-Martin G, Williams G, Crook A. Impact of a Mobile Phone App to Increase Vegetable Consumption and Variety in Adults: Large-Scale Community Cohort Study. JMIR mHealth and uHealth 2020;8(4):e14726
    CrossRef
  2. Goldstein SP, Thomas JG, Foster GD, Turner-McGrievy G, Butryn ML, Herbert JD, Martin GJ, Forman EM. Refining an algorithm-powered just-in-time adaptive weight control intervention: A randomized controlled trial evaluating model performance and behavioral outcomes. Health Informatics Journal 2020;:146045822090233
    CrossRef
  3. Idris I, Hampton J, Moncrieff F, Whitman M. Effectiveness of a Digital Lifestyle Change Program in Obese and Type 2 Diabetes Populations: Service Evaluation of Real-World Data. JMIR Diabetes 2020;5(1):e15189
    CrossRef
  4. Chen J, Berkman W, Bardouh M, Ng CYK, Allman-Farinelli M. The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 2019;57:208
    CrossRef
  5. Hicks JL, Althoff T, Sosic R, Kuhar P, Bostjancic B, King AC, Leskovec J, Delp SL. Best practices for analyzing large-scale health data from wearables and smartphone apps. npj Digital Medicine 2019;2(1)
    CrossRef
  6. Oka R, Nomura A, Yasugi A, Kometani M, Gondoh Y, Yoshimura K, Yoneda T. Study Protocol for the Effects of Artificial Intelligence (AI)-Supported Automated Nutritional Intervention on Glycemic Control in Patients with Type 2 Diabetes Mellitus. Diabetes Therapy 2019;10(3):1151
    CrossRef
  7. Fuscà E, Bolzon A, Buratin A, Ruffolo M, Berchialla P, Gregori D, Perissinotto E, Baldi I. Measuring Caloric Intake at the Population Level (NOTION): Protocol for an Experimental Study. JMIR Research Protocols 2019;8(3):e12116
    CrossRef
  8. Martin Payo R, Fernandez Álvarez M, Blanco Díaz M, Cuesta Izquierdo M, Stoyanov S, Llaneza Suárez E. Spanish adaptation and validation of the Mobile Application Rating Scale questionnaire. International Journal of Medical Informatics 2019;129:95
    CrossRef
  9. Pham Q, Graham G, Carrion C, Morita PP, Seto E, Stinson JN, Cafazzo JA. A Library of Analytic Indicators to Evaluate Effective Engagement with Consumer mHealth Apps for Chronic Conditions: Scoping Review. JMIR mHealth and uHealth 2019;7(1):e11941
    CrossRef
  10. Hendrie GA, James-Martin G, Williams G, Brindal E, Whyte B, Crook A. The Development of VegEze: Smartphone App to Increase Vegetable Consumption in Australian Adults. JMIR Formative Research 2019;3(1):e10731
    CrossRef
  11. Chen J, Gemming L, Hanning R, Allman-Farinelli M. Smartphone apps and the nutrition care process: Current perspectives and future considerations. Patient Education and Counseling 2018;101(4):750
    CrossRef
  12. Timmins KA, Green MA, Radley D, Morris MA, Pearce J. How has big data contributed to obesity research? A review of the literature. International Journal of Obesity 2018;42(12):1951
    CrossRef
  13. Matthews P, Topham P, Caleb-Solly P. Interaction and Engagement with an Anxiety Management App: Analysis Using Large-Scale Behavioral Data. JMIR Mental Health 2018;5(4):e58
    CrossRef
  14. Brindal E, Hendrie GA, Freyne J, Noakes M. Incorporating a Static Versus Supportive Mobile Phone App Into a Partial Meal Replacement Program With Face-to-Face Support: Randomized Controlled Trial. JMIR mHealth and uHealth 2018;6(4):e41
    CrossRef
  15. Jake-Schoffman DE, Silfee VJ, Waring ME, Boudreaux ED, Sadasivam RS, Mullen SP, Carey JL, Hayes RB, Ding EY, Bennett GG, Pagoto SL. Methods for Evaluating the Content, Usability, and Efficacy of Commercial Mobile Health Apps. JMIR mHealth and uHealth 2017;5(12):e190
    CrossRef
  16. Painter SL, Ahmed R, Hill JO, Kushner RF, Lindquist R, Brunning S, Margulies A. What Matters in Weight Loss? An In-Depth Analysis of Self-Monitoring. Journal of Medical Internet Research 2017;19(5):e160
    CrossRef
  17. De Cock N, Vangeel J, Lachat C, Beullens K, Vervoort L, Goossens L, Maes L, Deforche B, De Henauw S, Braet C, Eggermont S, Kolsteren P, Van Camp J, Van Lippevelde W. Use of Fitness and Nutrition Apps: Associations With Body Mass Index, Snacking, and Drinking Habits in Adolescents. JMIR mHealth and uHealth 2017;5(4):e58
    CrossRef
  18. Serrano KJ, Coa KI, Yu M, Wolff-Hughes DL, Atienza AA. Characterizing user engagement with health app data: a data mining approach. Translational Behavioral Medicine 2017;7(2):277
    CrossRef
  19. Atienza AA, Serrano KJ, Riley WT, Moser RP, Klein WM. Advancing Cancer Prevention and Behavior Theory in the Era of Big Data. Journal of Cancer Prevention 2016;21(3):201
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.5473)

:
  1. Cerrato P, Halamka J. The Transformative Power of Mobile Medicine. 2019. :41
    CrossRef