Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 15.07.15 in Vol 17, No 7 (2015): July

This paper is in the following e-collection/theme issue:

Works citing "Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.4273):

(note that this is only a small subset of citations)

  1. Reinertsen E, Clifford GD. A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses. Physiological Measurement 2018;39(5):05TR01
    CrossRef
  2. Mei G, Xu W, Li L, Zhao Z, Li H, Liu W, Jiao Y. The Role of Campus Data in Representing Depression Among College Students: Exploratory Research. JMIR Mental Health 2020;7(1):e12503
    CrossRef
  3. Gong J, Huang Y, Chow PI, Fua K, Gerber MS, Teachman BA, Barnes LE. Understanding behavioral dynamics of social anxiety among college students through smartphone sensors. Information Fusion 2019;49:57
    CrossRef
  4. Ai P, Liu Y, Zhao X. Big Five personality traits predict daily spatial behavior: Evidence from smartphone data. Personality and Individual Differences 2019;147:285
    CrossRef
  5. Wang W. Smartphones as Social Actors? Social dispositional factors in assessing anthropomorphism. Computers in Human Behavior 2017;68:334
    CrossRef
  6. Rohani DA, Tuxen N, Quemada Lopategui A, Kessing LV, Bardram JE. Data-Driven Learning in High-Resolution Activity Sampling From Patients With Bipolar Depression: Mixed-Methods Study. JMIR Mental Health 2018;5(2):e10122
    CrossRef
  7. Razavi R, Gharipour A, Gharipour M. Depression screening using mobile phone usage metadata: a machine learning approach. Journal of the American Medical Informatics Association 2020;27(4):522
    CrossRef
  8. Masud MT, Mamun MA, Thapa K, Lee D, Griffiths MD, Yang S. Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. Journal of Biomedical Informatics 2020;103:103371
    CrossRef
  9. Saeb S, Lonini L, Jayaraman A, Mohr DC, Kording KP. The need to approximate the use-case in clinical machine learning. GigaScience 2017;6(5)
    CrossRef
  10. Pratap A, Renn BN, Volponi J, Mooney SD, Gazzaley A, Arean PA, Anguera JA. Using Mobile Apps to Assess and Treat Depression in Hispanic and Latino Populations: Fully Remote Randomized Clinical Trial. Journal of Medical Internet Research 2018;20(8):e10130
    CrossRef
  11. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF. Major depressive disorder. Nature Reviews Disease Primers 2016;2(1)
    CrossRef
  12. Johnson M, Jones M, Shervey M, Dudley JT, Zimmerman N. Building a Secure Biomedical Data Sharing Decentralized App (DApp): Tutorial. Journal of Medical Internet Research 2019;21(10):e13601
    CrossRef
  13. Wang R, Wang W, Aung MSH, Ben-Zeev D, Brian R, Campbell AT, Choudhury T, Hauser M, Kane J, Scherer EA, Walsh M. Predicting Symptom Trajectories of Schizophrenia using Mobile Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2017;1(3):1
    CrossRef
  14. Nugent NR, Pendse SR, Schatten HT, Armey MF. Innovations in Technology and Mechanisms of Change in Behavioral Interventions. Behavior Modification 2019;:014544551984560
    CrossRef
  15. Majumder S, Deen MJ. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors 2019;19(9):2164
    CrossRef
  16. Bauer M, Glenn T, Monteith S, Bauer R, Whybrow PC, Geddes J. Ethical perspectives on recommending digital technology for patients with mental illness. International Journal of Bipolar Disorders 2017;5(1)
    CrossRef
  17. Luhmann M. Using Big Data to study subjective well-being. Current Opinion in Behavioral Sciences 2017;18:28
    CrossRef
  18. Helbich M. Toward dynamic urban environmental exposure assessments in mental health research. Environmental Research 2018;161:129
    CrossRef
  19. Aung MH, Matthews M, Choudhury T. Sensing behavioral symptoms of mental health and delivering personalized interventions using mobile technologies. Depression and Anxiety 2017;34(7):603
    CrossRef
  20. Becker D, van Breda W, Funk B, Hoogendoorn M, Ruwaard J, Riper H. Predictive modeling in e-mental health: A common language framework. Internet Interventions 2018;12:57
    CrossRef
  21. Rashid H, Mendu S, Daniel KE, Beltzer ML, Teachman BA, Boukhechba M, Barnes LE. Predicting Subjective Measures of Social Anxiety from Sparsely Collected Mobile Sensor Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(3):1
    CrossRef
  22. Cornet VP, Holden RJ. Systematic review of smartphone-based passive sensing for health and wellbeing. Journal of Biomedical Informatics 2018;77:120
    CrossRef
  23. Aung MSH, Alquaddoomi F, Hsieh C, Rabbi M, Yang L, Pollak JP, Estrin D, Choudhury T. Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain. IEEE Journal of Selected Topics in Signal Processing 2016;10(5):962
    CrossRef
  24. Fraccaro P, Beukenhorst A, Sperrin M, Harper S, Palmier-Claus J, Lewis S, Van der Veer SN, Peek N. Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: a systematic review. Journal of the American Medical Informatics Association 2019;26(11):1412
    CrossRef
  25. Fairburn CG, Patel V. The impact of digital technology on psychological treatments and their dissemination. Behaviour Research and Therapy 2017;88:19
    CrossRef
  26. Boukhechba M, Daros AR, Fua K, Chow PI, Teachman BA, Barnes LE. DemonicSalmon: Monitoring mental health and social interactions of college students using smartphones. Smart Health 2018;9-10:192
    CrossRef
  27. Lee U, Han K, Cho H, Chung K, Hong H, Lee S, Noh Y, Park S, Carroll JM. Intelligent positive computing with mobile, wearable, and IoT devices: Literature review and research directions. Ad Hoc Networks 2019;83:8
    CrossRef
  28. Barnett S, Huckvale K, Christensen H, Venkatesh S, Mouzakis K, Vasa R. Intelligent Sensing to Inform and Learn (InSTIL): A Scalable and Governance-Aware Platform for Universal, Smartphone-Based Digital Phenotyping for Research and Clinical Applications. Journal of Medical Internet Research 2019;21(11):e16399
    CrossRef
  29. Palmer KM, Burrows V. Ethical and Safety Concerns Regarding the Use of Mental Health–Related Apps in Counseling: Considerations for Counselors. Journal of Technology in Behavioral Science 2021;6(1):137
    CrossRef
  30. Asselbergs J, Ruwaard J, Ejdys M, Schrader N, Sijbrandij M, Riper H. Mobile Phone-Based Unobtrusive Ecological Momentary Assessment of Day-to-Day Mood: An Explorative Study. Journal of Medical Internet Research 2016;18(3):e72
    CrossRef
  31. Saha K, Chan L, De Barbaro K, Abowd GD, De Choudhury M. Inferring Mood Instability on Social Media by Leveraging Ecological Momentary Assessments. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2017;1(3):1
    CrossRef
  32. Berrouiguet S, Ramírez D, Barrigón ML, Moreno-Muñoz P, Carmona Camacho R, Baca-García E, Artés-Rodríguez A. Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques for Behavioral Changes Detection: A Case Series of the Evidence-Based Behavior (eB2) Study. JMIR mHealth and uHealth 2018;6(12):e197
    CrossRef
  33. Harari GM, Müller SR, Mishra V, Wang R, Campbell AT, Rentfrow PJ, Gosling SD. An Evaluation of Students’ Interest in and Compliance With Self-Tracking Methods. Social Psychological and Personality Science 2017;8(5):479
    CrossRef
  34. Kamilaris A, Pitsillides A. Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal 2016;3(6):885
    CrossRef
  35. Brietzke E, Hawken ER, Idzikowski M, Pong J, Kennedy SH, Soares CN. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neuroscience & Biobehavioral Reviews 2019;104:223
    CrossRef
  36. Schneble CO, Elger BS, Shaw DM. All Our Data Will Be Health Data One Day: The Need for Universal Data Protection and Comprehensive Consent. Journal of Medical Internet Research 2020;22(5):e16879
    CrossRef
  37. Cao J, Truong AL, Banu S, Shah AA, Sabharwal A, Moukaddam N. Tracking and Predicting Depressive Symptoms of Adolescents Using Smartphone-Based Self-Reports, Parental Evaluations, and Passive Phone Sensor Data: Development and Usability Study. JMIR Mental Health 2020;7(1):e14045
    CrossRef
  38. Henson P, Barnett I, Keshavan M, Torous J. Towards clinically actionable digital phenotyping targets in schizophrenia. npj Schizophrenia 2020;6(1)
    CrossRef
  39. Kirchner TR, Shiffman S. Spatio-temporal determinants of mental health and well-being: advances in geographically-explicit ecological momentary assessment (GEMA). Social Psychiatry and Psychiatric Epidemiology 2016;51(9):1211
    CrossRef
  40. Tuerk PW, Schaeffer CM, McGuire JF, Adams Larsen M, Capobianco N, Piacentini J. Adapting Evidence-Based Treatments for Digital Technologies: a Critical Review of Functions, Tools, and the Use of Branded Solutions. Current Psychiatry Reports 2019;21(10)
    CrossRef
  41. Kang Y. Ontology Components for the Depression Management based on Context. Journal of the Korea Institute of Information and Communication Engineering 2016;20(9):1785
    CrossRef
  42. Schoedel R, Au Q, Völkel ST, Lehmann F, Becker D, Bühner M, Bischl B, Hussmann H, Stachl C. Digital Footprints of Sensation Seeking. Zeitschrift für Psychologie 2018;226(4):232
    CrossRef
  43. Price M, Van Stolk-Cooke K, Legrand AC, Brier ZMF, Ward HL, Connor JP, Gratton J, Freeman K, Skalka C. Implementing assessments via mobile during the acute posttrauma period: feasibility, acceptability and strategies to improve response rates. European Journal of Psychotraumatology 2018;9(sup1):1500822
    CrossRef
  44. Dogrucu A, Perucic A, Isaro A, Ball D, Toto E, Rundensteiner EA, Agu E, Davis-Martin R, Boudreaux E. Moodable: On feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data. Smart Health 2020;17:100118
    CrossRef
  45. Sabharwal A, Veeraraghavan A. Bio-Behavioral Sensing. GetMobile: Mobile Computing and Communications 2017;21(3):11
    CrossRef
  46. DeMasi O, Feygin S, Dembo A, Aguilera A, Recht B. Well-Being Tracking via Smartphone-Measured Activity and Sleep: Cohort Study. JMIR mHealth and uHealth 2017;5(10):e137
    CrossRef
  47. Suffoletto B, Aguilera A. Expanding Adolescent Depression Prevention Through Simple Communication Technologies. Journal of Adolescent Health 2016;59(4):373
    CrossRef
  48. Armstrong CM, Ciulla RP, Williams SA, Micheel LJ. An Applied Test of Knowledge Translation Methods Using a Mobile Health Solution. Military Medicine 2020;185(Supplement_1):526
    CrossRef
  49. Hung GC, Yang P, Chang C, Chiang J, Chen Y. Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study. JMIR Research Protocols 2016;5(3):e160
    CrossRef
  50. Mandryk RL, Birk MV. Toward Game-Based Digital Mental Health Interventions: Player Habits and Preferences. Journal of Medical Internet Research 2017;19(4):e128
    CrossRef
  51. Scott SB, Munoz E, Mogle JA, Gamaldo AA, Smyth JM, Almeida DM, Sliwinski MJ. Perceived neighborhood characteristics predict severity and emotional response to daily stressors. Social Science & Medicine 2018;200:262
    CrossRef
  52. Donker T, Van Esveld S, Fischer N, Van Straten A. 0Phobia – towards a virtual cure for acrophobia: study protocol for a randomized controlled trial. Trials 2018;19(1)
    CrossRef
  53. Chib A, Lin SH. Theoretical Advancements in mHealth: A Systematic Review of Mobile Apps. Journal of Health Communication 2018;23(10-11):909
    CrossRef
  54. Tseng VW, Sano A, Ben-Zeev D, Brian R, Campbell AT, Hauser M, Kane JM, Scherer EA, Wang R, Wang W, Wen H, Choudhury T. Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia. Scientific Reports 2020;10(1)
    CrossRef
  55. Di Matteo D, Fotinos K, Lokuge S, Yu J, Sternat T, Katzman MA, Rose J. The Relationship Between Smartphone-Recorded Environmental Audio and Symptomatology of Anxiety and Depression: Exploratory Study. JMIR Formative Research 2020;4(8):e18751
    CrossRef
  56. Lind MN, Byrne ML, Wicks G, Smidt AM, Allen NB. The Effortless Assessment of Risk States (EARS) Tool: An Interpersonal Approach to Mobile Sensing. JMIR Mental Health 2018;5(3):e10334
    CrossRef
  57. Palmius N, Saunders KEA, Carr O, Geddes JR, Goodwin GM, De Vos M. Group-Personalized Regression Models for Predicting Mental Health Scores From Objective Mobile Phone Data Streams: Observational Study. Journal of Medical Internet Research 2018;20(10):e10194
    CrossRef
  58. Zulueta J, Leow AD, Ajilore O. Real-Time Monitoring: A Key Element in Personalized Health and Precision Health. FOCUS 2020;18(2):175
    CrossRef
  59. Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology 2018;43(8):1660
    CrossRef
  60. Khan SA, Farhan AA, Fahad LG, Tahir SF. Personal productivity monitoring through smartphones. Journal of Ambient Intelligence and Smart Environments 2020;12(4):327
    CrossRef
  61. Boonstra TW, Nicholas J, Wong QJ, Shaw F, Townsend S, Christensen H. Using Mobile Phone Sensor Technology for Mental Health Research: Integrated Analysis to Identify Hidden Challenges and Potential Solutions. Journal of Medical Internet Research 2018;20(7):e10131
    CrossRef
  62. Porras-Segovia A, Molina-Madueño RM, Berrouiguet S, López-Castroman J, Barrigón ML, Pérez-Rodríguez MS, Marco JH, Díaz-Oliván I, de León S, Courtet P, Artés-Rodríguez A, Baca-García E. Smartphone-based ecological momentary assessment (EMA) in psychiatric patients and student controls: A real-world feasibility study. Journal of Affective Disorders 2020;274:733
    CrossRef
  63. Thomée S. Mobile Phone Use and Mental Health. A Review of the Research That Takes a Psychological Perspective on Exposure. International Journal of Environmental Research and Public Health 2018;15(12):2692
    CrossRef
  64. Aguilera A, Bruehlman-Senecal E, Demasi O, Avila P. Automated Text Messaging as an Adjunct to Cognitive Behavioral Therapy for Depression: A Clinical Trial. Journal of Medical Internet Research 2017;19(5):e148
    CrossRef
  65. Dogan E, Sander C, Wagner X, Hegerl U, Kohls E. Smartphone-Based Monitoring of Objective and Subjective Data in Affective Disorders: Where Are We and Where Are We Going? Systematic Review. Journal of Medical Internet Research 2017;19(7):e262
    CrossRef
  66. Harari GM, Müller SR, Aung MS, Rentfrow PJ. Smartphone sensing methods for studying behavior in everyday life. Current Opinion in Behavioral Sciences 2017;18:83
    CrossRef
  67. Ram N, Brinberg M, Pincus AL, Conroy DE. The Questionable Ecological Validity of Ecological Momentary Assessment: Considerations for Design and Analysis. Research in Human Development 2017;14(3):253
    CrossRef
  68. Rohani DA, Faurholt-Jepsen M, Kessing LV, Bardram JE. Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review. JMIR mHealth and uHealth 2018;6(8):e165
    CrossRef
  69. Barrigón ML, Baca-García E. Current challenges in research on suicide. Revista de Psiquiatría y Salud Mental (English Edition) 2018;11(1):1
    CrossRef
  70. Mehrotra A, Musolesi M. Using Autoencoders to Automatically Extract Mobility Features for Predicting Depressive States. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(3):1
    CrossRef
  71. Cai L, Boukhechba M, Gerber MS, Barnes LE, Showalter SL, Cohn WF, Chow PI. An integrated framework for using mobile sensing to understand response to mobile interventions among breast cancer patients. Smart Health 2020;15:100086
    CrossRef
  72. Saeb S, Lattie EG, Schueller SM, Kording KP, Mohr DC. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 2016;4:e2537
    CrossRef
  73. Sultana M, Al-Jefri M, Lee J. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: An Exploratory Study (Preprint). JMIR mHealth and uHealth 2020;
    CrossRef
  74. Torous J, Gershon A, Hays R, Onnela J, Baker JT. Digital Phenotyping for the Busy Psychiatrist: Clinical Implications and Relevance. Psychiatric Annals 2019;49(5):196
    CrossRef
  75. Shaffer JA, Kronish IM, Falzon L, Cheung YK, Davidson KW. N-of-1 Randomized Intervention Trials in Health Psychology: A Systematic Review and Methodology Critique. Annals of Behavioral Medicine 2018;52(9):731
    CrossRef
  76. Torous J, Kiang MV, Lorme J, Onnela J. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Mental Health 2016;3(2):e16
    CrossRef
  77. Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. npj Digital Medicine 2019;2(1)
    CrossRef
  78. Darvariu V, Convertino L, Mehrotra A, Musolesi M. Quantifying the Relationships between Everyday Objects and Emotional States through Deep Learning Based Image Analysis Using Smartphones. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(1):1
    CrossRef
  79. Suffoletto B, Scaglione S. Using Digital Interventions to Support Individuals with Alcohol Use Disorder and Advanced Liver Disease: A Bridge Over Troubled Waters. Alcoholism: Clinical and Experimental Research 2018;42(7):1160
    CrossRef
  80. Huckins JF, daSilva AW, Wang R, Wang W, Hedlund EL, Murphy EI, Lopez RB, Rogers C, Holtzheimer PE, Kelley WM, Heatherton TF, Wagner DD, Haxby JV, Campbell AT. Fusing Mobile Phone Sensing and Brain Imaging to Assess Depression in College Students. Frontiers in Neuroscience 2019;13
    CrossRef
  81. Armontrout J, Torous J, Fisher M, Drogin E, Gutheil T. Mobile Mental Health: Navigating New Rules and Regulations for Digital Tools. Current Psychiatry Reports 2016;18(10)
    CrossRef
  82. Balicer RD, Luengo-Oroz M, Cohen-Stavi C, Loyola E, Mantingh F, Romanoff L, Galea G. Using big data for non-communicable disease surveillance. The Lancet Diabetes & Endocrinology 2018;6(8):595
    CrossRef
  83. Silvera-Tawil D, Hussain MS, Li J. Emerging technologies for precision health: An insight into sensing technologies for health and wellbeing. Smart Health 2020;15:100100
    CrossRef
  84. Narziev N, Goh H, Toshnazarov K, Lee SA, Chung K, Noh Y. STDD: Short-Term Depression Detection with Passive Sensing. Sensors 2020;20(5):1396
    CrossRef
  85. Busk J, Faurholt-Jepsen M, Frost M, Bardram JE, Vedel Kessing L, Winther O. Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach. JMIR mHealth and uHealth 2020;8(4):e15028
    CrossRef
  86. Barnett I, Onnela J. Inferring mobility measures from GPS traces with missing data. Biostatistics 2020;21(2):e98
    CrossRef
  87. Ware S, Yue C, Morillo R, Lu J, Shang C, Kamath J, Bamis A, Bi J, Russell A, Wang B. Large-scale Automatic Depression Screening Using Meta-data from WiFi Infrastructure. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(4):1
    CrossRef
  88. Renn BN, Pratap A, Atkins DC, Mooney SD, Areán PA. Smartphone-based passive assessment of mobility in depression: Challenges and opportunities. Mental Health and Physical Activity 2018;14:136
    CrossRef
  89. Cuttone A, Bækgaard P, Sekara V, Jonsson H, Larsen JE, Lehmann S, Zhou W. SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events. PLOS ONE 2017;12(1):e0169901
    CrossRef
  90. Rawtaer I, Mahendran R, Kua EH, Tan HP, Tan HX, Lee T, Ng TP. Early Detection of Mild Cognitive Impairment With In-Home Sensors to Monitor Behavior Patterns in Community-Dwelling Senior Citizens in Singapore: Cross-Sectional Feasibility Study. Journal of Medical Internet Research 2020;22(5):e16854
    CrossRef
  91. Trifan A, Oliveira M, Oliveira JL. Passive Sensing of Health Outcomes Through Smartphones: Systematic Review of Current Solutions and Possible Limitations. JMIR mHealth and uHealth 2019;7(8):e12649
    CrossRef
  92. Aubourg T, Demongeot J, Renard F, Provost H, Vuillerme N. Association between social asymmetry and depression in older adults: A phone Call Detail Records analysis. Scientific Reports 2019;9(1)
    CrossRef
  93. Meng J, Hussain SA, Mohr DC, Czerwinski M, Zhang M. Exploring User Needs for a Mobile Behavioral-Sensing Technology for Depression Management: Qualitative Study. Journal of Medical Internet Research 2018;20(7):e10139
    CrossRef
  94. Holtz BE, McCarroll AM, Mitchell KM. Perceptions and Attitudes Toward a Mobile Phone App for Mental Health for College Students: Qualitative Focus Group Study. JMIR Formative Research 2020;4(8):e18347
    CrossRef
  95. Perle JG. A Practical Guide for Health Service Providers on the Design, Development, and Deployment of Smartphone Apps for the Delivery of Clinical Services. Journal of Technology in Behavioral Science 2020;5(1):1
    CrossRef
  96. Hekler E, Tiro JA, Hunter CM, Nebeker C. Precision Health: The Role of the Social and Behavioral Sciences in Advancing the Vision. Annals of Behavioral Medicine 2020;54(11):805
    CrossRef
  97. Cote DJ, Barnett I, Onnela J, Smith TR. Digital Phenotyping in Patients with Spine Disease: A Novel Approach to Quantifying Mobility and Quality of Life. World Neurosurgery 2019;126:e241
    CrossRef
  98. Fillekes MP, Giannouli E, Kim E, Zijlstra W, Weibel R. Towards a comprehensive set of GPS-based indicators reflecting the multidimensional nature of daily mobility for applications in health and aging research. International Journal of Health Geographics 2019;18(1)
    CrossRef
  99. Martinez-Martin N, Insel TR, Dagum P, Greely HT, Cho MK. Data mining for health: staking out the ethical territory of digital phenotyping. npj Digital Medicine 2018;1(1)
    CrossRef
  100. Low CA, Dey AK, Ferreira D, Kamarck T, Sun W, Bae S, Doryab A. Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study. Journal of Medical Internet Research 2017;19(12):e420
    CrossRef
  101. Raugh IM, James SH, Gonzalez CM, Chapman HC, Cohen AS, Kirkpatrick B, Strauss GP. Geolocation as a Digital Phenotyping Measure of Negative Symptoms and Functional Outcome. Schizophrenia Bulletin 2020;46(6):1596
    CrossRef
  102. Wicks P, Hotopf M, Narayan VA, Basch E, Weatherall J, Gray M. It’s a long shot, but it just might work! Perspectives on the future of medicine. BMC Medicine 2016;14(1)
    CrossRef
  103. Jones M, Johnson M, Shervey M, Dudley JT, Zimmerman N. Privacy-Preserving Methods for Feature Engineering Using Blockchain: Review, Evaluation, and Proof of Concept. Journal of Medical Internet Research 2019;21(8):e13600
    CrossRef
  104. Faherty LJ, Hantsoo L, Appleby D, Sammel MD, Bennett IM, Wiebe DJ. Movement patterns in women at risk for perinatal depression: use of a mood-monitoring mobile application in pregnancy. Journal of the American Medical Informatics Association 2017;24(4):746
    CrossRef
  105. Montag C, Sindermann C, Baumeister H. Digital phenotyping in psychological and medical sciences: a reflection about necessary prerequisites to reduce harm and increase benefits. Current Opinion in Psychology 2020;36:19
    CrossRef
  106. Andrade AQ, Roughead EE. Consumer‐directed technologies to improve medication management and safety. Medical Journal of Australia 2019;210(S6)
    CrossRef
  107. Aledavood T, Triana Hoyos AM, Alakörkkö T, Kaski K, Saramäki J, Isometsä E, Darst RK. Data Collection for Mental Health Studies Through Digital Platforms: Requirements and Design of a Prototype. JMIR Research Protocols 2017;6(6):e110
    CrossRef
  108. Wang W, Harari GM, Wang R, Müller SR, Mirjafari S, Masaba K, Campbell AT. Sensing Behavioral Change over Time. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(3):1
    CrossRef
  109. Levinson CA, Christian C, Shankar‐Ram S, Brosof LC, Williams B. Sensor technology implementation for research, treatment, and assessment of eating disorders. International Journal of Eating Disorders 2019;52(10):1176
    CrossRef
  110. Wu C, Boukhechba M, Cai L, Barnes LE, Gerber MS. Improving momentary stress measurement and prediction with bluetooth encounter networks. Smart Health 2018;9-10:219
    CrossRef
  111. Sefidgar YS, Seo W, Kuehn KS, Althoff T, Browning A, Riskin E, Nurius PS, Dey AK, Mankoff J. Passively-sensed Behavioral Correlates of Discrimination Events in College Students. Proceedings of the ACM on Human-Computer Interaction 2019;3(CSCW):1
    CrossRef
  112. Tuarob S, Tucker CS, Kumara S, Giles CL, Pincus AL, Conroy DE, Ram N. How are you feeling?: A personalized methodology for predicting mental states from temporally observable physical and behavioral information. Journal of Biomedical Informatics 2017;68:1
    CrossRef
  113. Stachl C, Hilbert S, Au J, Buschek D, De Luca A, Bischl B, Hussmann H, Bühner M, Wrzus C. Personality Traits Predict Smartphone Usage. European Journal of Personality 2017;31(6):701
    CrossRef
  114. Xu X, Chikersal P, Doryab A, Villalba DK, Dutcher JM, Tumminia MJ, Althoff T, Cohen S, Creswell KG, Creswell JD, Mankoff J, Dey AK. Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2019;3(3):1
    CrossRef
  115. Chow PI, Fua K, Huang Y, Bonelli W, Xiong H, Barnes LE, Teachman BA. Using Mobile Sensing to Test Clinical Models of Depression, Social Anxiety, State Affect, and Social Isolation Among College Students. Journal of Medical Internet Research 2017;19(3):e62
    CrossRef
  116. Bhattacharya K, Kaski K. Social physics: uncovering human behaviour from communication. Advances in Physics: X 2019;4(1):1527723
    CrossRef
  117. Turvey C, Fortney J. The Use of Telemedicine and Mobile Technology to Promote Population Health and Population Management for Psychiatric Disorders. Current Psychiatry Reports 2017;19(11)
    CrossRef
  118. Torous J, Levin ME, Ahern DK, Oser ML. Cognitive Behavioral Mobile Applications: Clinical Studies, Marketplace Overview, and Research Agenda. Cognitive and Behavioral Practice 2017;24(2):215
    CrossRef
  119. Morshed MB, Saha K, Li R, D'Mello SK, De Choudhury M, Abowd GD, Plötz T. Prediction of Mood Instability with Passive Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2019;3(3):1
    CrossRef
  120. Obuchi M, Huckins JF, Wang W, daSilva A, Rogers C, Murphy E, Hedlund E, Holtzheimer P, Mirjafari S, Campbell A. Predicting Brain Functional Connectivity Using Mobile Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(1):1
    CrossRef
  121. Hird N, Ghosh S, Kitano H. Digital health revolution: perfect storm or perfect opportunity for pharmaceutical R&D?. Drug Discovery Today 2016;21(6):900
    CrossRef
  122. Bruehlman-Senecal E, Aguilera A, Schueller SM. Mobile Phone–Based Mood Ratings Prospectively Predict Psychotherapy Attendance. Behavior Therapy 2017;48(5):614
    CrossRef
  123. Boukhechba M, Chow P, Fua K, Teachman BA, Barnes LE. Predicting Social Anxiety From Global Positioning System Traces of College Students: Feasibility Study. JMIR Mental Health 2018;5(3):e10101
    CrossRef
  124. Briffault X, Morgiève M, Courtet P. From e-Health to i-Health: Prospective Reflexions on the Use of Intelligent Systems in Mental Health Care. Brain Sciences 2018;8(6):98
    CrossRef
  125. Barrigón ML, Baca-García E. Retos actuales en la investigación en suicidio. Revista de Psiquiatría y Salud Mental 2018;11(1):1
    CrossRef
  126. Huguet A, Rao S, McGrath PJ, Wozney L, Wheaton M, Conrod J, Rozario S, Choo KR. A Systematic Review of Cognitive Behavioral Therapy and Behavioral Activation Apps for Depression. PLOS ONE 2016;11(5):e0154248
    CrossRef
  127. Singh VK, Long T. Automatic assessment of mental health using phone metadata. Proceedings of the Association for Information Science and Technology 2018;55(1):450
    CrossRef
  128. Barnett I, Torous J, Staples P, Keshavan M, Onnela J. Beyond smartphones and sensors: choosing appropriate statistical methods for the analysis of longitudinal data. Journal of the American Medical Informatics Association 2018;25(12):1669
    CrossRef
  129. Christensen MA, Bettencourt L, Kaye L, Moturu ST, Nguyen KT, Olgin JE, Pletcher MJ, Marcus GM, Romigi A. Direct Measurements of Smartphone Screen-Time: Relationships with Demographics and Sleep. PLOS ONE 2016;11(11):e0165331
    CrossRef
  130. Cho A, Lee H, Jo Y, Whang M. Embodied Emotion Recognition Based on Life-Logging. Sensors 2019;19(23):5308
    CrossRef
  131. Sano A, Taylor S, McHill AW, Phillips AJ, Barger LK, Klerman E, Picard R. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study. Journal of Medical Internet Research 2018;20(6):e210
    CrossRef
  132. Klaas V, Troster G, Walt H, Jenewein J. Remotely Monitoring Cancer-Related Fatigue Using the Smart-Phone: Results of an Observational Study. Information 2018;9(11):271
    CrossRef
  133. Basco MR, Kyrarini M, Makedon FS. Personal Devices and Smartphone Applications for Detection of Depression. Psychiatric Annals 2020;50(6):255
    CrossRef
  134. Adler DA, Ben-Zeev D, Tseng VW, Kane JM, Brian R, Campbell AT, Hauser M, Scherer EA, Choudhury T. Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks. JMIR mHealth and uHealth 2020;8(8):e19962
    CrossRef
  135. Lu J, Shang C, Yue C, Morillo R, Ware S, Kamath J, Bamis A, Russell A, Wang B, Bi J. Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multi-task Learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(1):1
    CrossRef
  136. Saeb S, Cybulski TR, Kording KP, Mohr DC. Scalable Passive Sleep Monitoring Using Mobile Phones: Opportunities and Obstacles. Journal of Medical Internet Research 2017;19(4):e118
    CrossRef
  137. Yim SJ, Lui LM, Lee Y, Rosenblat JD, Ragguett R, Park C, Subramaniapillai M, Cao B, Zhou A, Rong C, Lin K, Ho RC, Coles AS, Majeed A, Wong ER, Phan L, Nasri F, McIntyre RS. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. Journal of Affective Disorders 2020;274:602
    CrossRef
  138. Johansen B, Petersen M, Korzepa M, Larsen J, Pontoppidan N, Larsen J. Personalizing the Fitting of Hearing Aids by Learning Contextual Preferences From Internet of Things Data. Computers 2017;7(1):1
    CrossRef
  139. Miloff A, Marklund A, Carlbring P. The challenger app for social anxiety disorder: New advances in mobile psychological treatment. Internet Interventions 2015;2(4):382
    CrossRef
  140. Malhi GS, Hamilton A, Morris G, Mannie Z, Das P, Outhred T. The promise of digital mood tracking technologies: are we heading on the right track?. Evidence Based Mental Health 2017;20(4):102
    CrossRef
  141. Mohr DC, Zhang M, Schueller SM. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology 2017;13(1):23
    CrossRef
  142. Nicholas J, Shilton K, Schueller SM, Gray EL, Kwasny MJ, Mohr DC. The Role of Data Type and Recipient in Individuals’ Perspectives on Sharing Passively Collected Smartphone Data for Mental Health: Cross-Sectional Questionnaire Study. JMIR mHealth and uHealth 2019;7(4):e12578
    CrossRef
  143. Frank E, Pong J, Asher Y, Soares CN. Smart phone technologies and ecological momentary data. Current Opinion in Psychiatry 2018;31(1):3
    CrossRef
  144. Goodspeed R, Yan X, Hardy J, Vydiswaran VV, Berrocal VJ, Clarke P, Romero DM, Gomez-Lopez IN, Veinot T. Comparing the Data Quality of Global Positioning System Devices and Mobile Phones for Assessing Relationships Between Place, Mobility, and Health: Field Study. JMIR mHealth and uHealth 2018;6(8):e168
    CrossRef
  145. Aledavood T, Lehmann S, Saramäki J. Digital daily cycles of individuals. Frontiers in Physics 2015;3
    CrossRef
  146. Craske MG. Honoring the Past, Envisioning the Future: ABCT’s 50th Anniversary Presidential Address. Behavior Therapy 2018;49(2):151
    CrossRef
  147. Ware S, Yue C, Morillo R, Lu J, Shang C, Bi J, Kamath J, Russell A, Bamis A, Wang B. Predicting depressive symptoms using smartphone data. Smart Health 2020;15:100093
    CrossRef
  148. Zulueta J, Piscitello A, Rasic M, Easter R, Babu P, Langenecker SA, McInnis M, Ajilore O, Nelson PC, Ryan K, Leow A. Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study. Journal of Medical Internet Research 2018;20(7):e241
    CrossRef
  149. Palmius N, Tsanas A, Saunders KEA, Bilderbeck AC, Geddes JR, Goodwin GM, De Vos M. Detecting Bipolar Depression From Geographic Location Data. IEEE Transactions on Biomedical Engineering 2017;64(8):1761
    CrossRef
  150. Place S, Blanch-Hartigan D, Rubin C, Gorrostieta C, Mead C, Kane J, Marx BP, Feast J, Deckersbach T, Pentland A, Nierenberg A, Azarbayejani A. Behavioral Indicators on a Mobile Sensing Platform Predict Clinically Validated Psychiatric Symptoms of Mood and Anxiety Disorders. Journal of Medical Internet Research 2017;19(3):e75
    CrossRef
  151. Saeb S, Lattie EG, Kording KP, Mohr DC. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety. JMIR mHealth and uHealth 2017;5(8):e112
    CrossRef
  152. Spaiser V, Luzzatti D, Gregoriou A, Ferrara E, Chadefaux T. Advancing sustainability: Using smartphones to study environmental behavior in a field-experimental setup. Data Science 2019;2(1-2):277
    CrossRef
  153. Leonard NR, Silverman M, Sherpa DP, Naegle MA, Kim H, Coffman DL, Ferdschneider M. Mobile Health Technology Using a Wearable Sensorband for Female College Students With Problem Drinking: An Acceptability and Feasibility Study. JMIR mHealth and uHealth 2017;5(7):e90
    CrossRef
  154. Harari GM, Lane ND, Wang R, Crosier BS, Campbell AT, Gosling SD. Using Smartphones to Collect Behavioral Data in Psychological Science. Perspectives on Psychological Science 2016;11(6):838
    CrossRef
  155. Torous J, Rodriguez J, Powell A. The New Digital Divide For Digital Biomarkers. Digital Biomarkers 2017;
    CrossRef
  156. Roberts LW, Chan S, Torous J. New tests, new tools: mobile and connected technologies in advancing psychiatric diagnosis. npj Digital Medicine 2018;1(1)
    CrossRef
  157. Jim HSL, Hoogland AI, Brownstein NC, Barata A, Dicker AP, Knoop H, Gonzalez BD, Perkins R, Rollison D, Gilbert SM, Nanda R, Berglund A, Mitchell R, Johnstone PAS. Innovations in research and clinical care using patient‐generated health data. CA: A Cancer Journal for Clinicians 2020;70(3):182
    CrossRef
  158. Seppälä J, De Vita I, Jämsä T, Miettunen J, Isohanni M, Rubinstein K, Feldman Y, Grasa E, Corripio I, Berdun J, D'Amico E, Bulgheroni M. Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review. JMIR Mental Health 2019;6(2):e9819
    CrossRef
  159. Mastoras R, Iakovakis D, Hadjidimitriou S, Charisis V, Kassie S, Alsaadi T, Khandoker A, Hadjileontiadis LJ. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports 2019;9(1)
    CrossRef
  160. Webb CA, Rosso IM, Rauch SL. Internet-Based Cognitive-Behavioral Therapy for Depression: Current Progress and Future Directions. Harvard Review of Psychiatry 2017;25(3):114
    CrossRef
  161. Kleiman EM, Nock MK. Real-time assessment of suicidal thoughts and behaviors. Current Opinion in Psychology 2018;22:33
    CrossRef
  162. Berrouiguet S, Perez-Rodriguez MM, Larsen M, Baca-García E, Courtet P, Oquendo M. From eHealth to iHealth: Transition to Participatory and Personalized Medicine in Mental Health. Journal of Medical Internet Research 2018;20(1):e2
    CrossRef
  163. Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. JMIR mHealth and uHealth 2016;4(3):e111
    CrossRef
  164. Bhugra D, Tasman A, Pathare S, Priebe S, Smith S, Torous J, Arbuckle MR, Langford A, Alarcón RD, Chiu HFK, First MB, Kay J, Sunkel C, Thapar A, Udomratn P, Baingana FK, Kestel D, Ng RMK, Patel A, Picker LD, McKenzie KJ, Moussaoui D, Muijen M, Bartlett P, Davison S, Exworthy T, Loza N, Rose D, Torales J, Brown M, Christensen H, Firth J, Keshavan M, Li A, Onnela J, Wykes T, Elkholy H, Kalra G, Lovett KF, Travis MJ, Ventriglio A. The WPA- Lancet Psychiatry Commission on the Future of Psychiatry. The Lancet Psychiatry 2017;4(10):775
    CrossRef
  165. DeMasi O, Kording K, Recht B, Jan Y. Meaningless comparisons lead to false optimism in medical machine learning. PLOS ONE 2017;12(9):e0184604
    CrossRef
  166. Šimon M, Vašát P, Poláková M, Gibas P, Daňková H. Activity spaces of homeless men and women measured by GPS tracking data: A comparative analysis of Prague and Pilsen. Cities 2019;86:145
    CrossRef
  167. Singh VK, Goyal R, Wu S. Riskalyzer. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(1):1
    CrossRef
  168. Eichstaedt JC, Smith RJ, Merchant RM, Ungar LH, Crutchley P, Preoţiuc-Pietro D, Asch DA, Schwartz HA. Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences 2018;115(44):11203
    CrossRef
  169. Piau A, Rumeau P, Nourhashemi F, Martin MS. Information and Communication Technologies, a Promising Way to Support Pharmacotherapy for the Behavioral and Psychological Symptoms of Dementia. Frontiers in Pharmacology 2019;10
    CrossRef
  170. Li B, Sano A. Extraction and Interpretation of Deep Autoencoder-based Temporal Features from Wearables for Forecasting Personalized Mood, Health, and Stress. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(2):1
    CrossRef
  171. Bourla A, Mouchabac S, El Hage W, Ferreri F. e-PTSD: an overview on how new technologies can improve prediction and assessment of Posttraumatic Stress Disorder (PTSD). European Journal of Psychotraumatology 2018;9(sup1):1424448
    CrossRef
  172. Bidargaddi N, Musiat P, Makinen V, Ermes M, Schrader G, Licinio J. Digital footprints: facilitating large-scale environmental psychiatric research in naturalistic settings through data from everyday technologies. Molecular Psychiatry 2017;22(2):164
    CrossRef
  173. Kennedy SH, Ceniti AK. Unpacking Major Depressive Disorder: From Classification to Treatment Selection. The Canadian Journal of Psychiatry 2018;63(5):308
    CrossRef
  174. Bourla A, Ferreri F, Ogorzelec L, Guinchard C, Mouchabac S. Évaluation des troubles thymiques par l’étude des données passives : le concept de phénotype digital à l’épreuve de la culture de métier de psychiatre. L'Encéphale 2018;44(2):168
    CrossRef
  175. Bader CS, Skurla M, Vahia IV. Technology in the Assessment, Treatment, and Management of Depression. Harvard Review of Psychiatry 2020;28(1):60
    CrossRef
  176. Harari GM. A process-oriented approach to respecting privacy in the context of mobile phone tracking. Current Opinion in Psychology 2020;31:141
    CrossRef
  177. Arean PA, Hallgren KA, Jordan JT, Gazzaley A, Atkins DC, Heagerty PJ, Anguera JA. The Use and Effectiveness of Mobile Apps for Depression: Results From a Fully Remote Clinical Trial. Journal of Medical Internet Research 2016;18(12):e330
    CrossRef
  178. Sarda A, Munuswamy S, Sarda S, Subramanian V. Using Passive Smartphone Sensing for Improved Risk Stratification of Patients With Depression and Diabetes: Cross-Sectional Observational Study. JMIR mHealth and uHealth 2019;7(1):e11041
    CrossRef
  179. Doryab A, Villalba DK, Chikersal P, Dutcher JM, Tumminia M, Liu X, Cohen S, Creswell K, Mankoff J, Creswell JD, Dey AK. Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data. JMIR mHealth and uHealth 2019;7(7):e13209
    CrossRef
  180. Wang R, Wang W, daSilva A, Huckins JF, Kelley WM, Heatherton TF, Campbell AT. Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018;2(1):1
    CrossRef
  181. Singh VK, Ghosh I. Inferring Individual Social Capital Automatically via Phone Logs. Proceedings of the ACM on Human-Computer Interaction 2017;1(CSCW):1
    CrossRef
  182. Jongs N, Jagesar R, van Haren NEM, Penninx BWJH, Reus L, Visser PJ, van der Wee NJA, Koning IM, Arango C, Sommer IEC, Eijkemans MJC, Vorstman JA, Kas MJ. A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data. Translational Psychiatry 2020;10(1)
    CrossRef
  183. Pratap A, Atkins DC, Renn BN, Tanana MJ, Mooney SD, Anguera JA, Areán PA. The accuracy of passive phone sensors in predicting daily mood. Depression and Anxiety 2019;36(1):72
    CrossRef
  184. Sarikaya R. The Technology Behind Personal Digital Assistants: An overview of the system architecture and key components. IEEE Signal Processing Magazine 2017;34(1):67
    CrossRef
  185. H. Birk R, Samuel G. Can digital data diagnose mental health problems? A sociological exploration of ‘digital phenotyping’. Sociology of Health & Illness 2020;42(8):1873
    CrossRef
  186. Ha Q, Chen JV, Uy HU, Capistrano EP. Exploring the Privacy Concerns in Using Intelligent Virtual Assistants under Perspectives of Information Sensitivity and Anthropomorphism. International Journal of Human–Computer Interaction 2020;:1
    CrossRef
  187. Thakur SS, Roy RB. Predicting mental health using smart-phone usage and sensor data. Journal of Ambient Intelligence and Humanized Computing 2020;
    CrossRef
  188. Bertoa MF, Moreno N, Perez-Vereda A, Bandera D, Álvarez-Palomo JM, Canal C, Linaje M. Digital Avatars: Promoting Independent Living for Older Adults. Wireless Communications and Mobile Computing 2020;2020:1
    CrossRef
  189. Wang Y, Mao H. Intelligent soccer system based on biosensor network technology. Measurement 2021;173:108564
    CrossRef
  190. Fischer F, Kleen S. Possibilities, Problems, and Perspectives of Data Collection by Mobile Apps in Longitudinal Epidemiological Studies: Scoping Review. Journal of Medical Internet Research 2021;23(1):e17691
    CrossRef
  191. Taeger J, Bischoff S, Hagen R, Rak K. Utilization of Smartphone Depth Mapping Cameras for App-Based Grading of Facial Movement Disorders: Development and Feasibility Study. JMIR mHealth and uHealth 2021;9(1):e19346
    CrossRef
  192. Fulford D, Mote J, Gonzalez R, Abplanalp S, Zhang Y, Luckenbaugh J, Onnela J, Busso C, Gard DE. Smartphone sensing of social interactions in people with and without schizophrenia. Journal of Psychiatric Research 2020;
    CrossRef
  193. Moshe I, Terhorst Y, Opoku Asare K, Sander LB, Ferreira D, Baumeister H, Mohr DC, Pulkki-Råback L. Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data. Frontiers in Psychiatry 2021;12
    CrossRef
  194. Aubourg T, Demongeot J, Vuillerme N. Novel statistical approach for assessing the persistence of the circadian rhythms of social activity from telephone call detail records in older adults. Scientific Reports 2020;10(1)
    CrossRef
  195. Zulueta J, Ajilore OA. Beyond non-inferior: how telepsychiatry technologies can lead to superior care. International Review of Psychiatry 2020;:1
    CrossRef
  196. Kumar D, Jeuris S, Bardram JE, Dragoni N. Mobile and Wearable Sensing Frameworks for mHealth Studies and Applications. ACM Transactions on Computing for Healthcare 2021;2(1):1
    CrossRef
  197. Thongnopakun S, Visanuyothin S, Manwong M, Rodjarkpai Y, Patipat P.

    Promoting Health Literacy to Prevent Depression Among Workers in Industrial Factories in the Eastern Economic Corridor of Thailand

    . Journal of Multidisciplinary Healthcare 2020;Volume 13:1443
    CrossRef
  198. Pedrelli P, Fedor S, Ghandeharioun A, Howe E, Ionescu DF, Bhathena D, Fisher LB, Cusin C, Nyer M, Yeung A, Sangermano L, Mischoulon D, Alpert JE, Picard RW. Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. Frontiers in Psychiatry 2020;11
    CrossRef
  199. Mendu S, Baglione A, Baee S, Wu C, Ng B, Shaked A, Clore G, Boukhechba M, Barnes L. A Framework for Understanding the Relationship between Social Media Discourse and Mental Health. Proceedings of the ACM on Human-Computer Interaction 2020;4(CSCW2):1
    CrossRef
  200. Chikersal P, Doryab A, Tumminia M, Villalba DK, Dutcher JM, Liu X, Cohen S, Creswell KG, Mankoff J, Creswell JD, Goel M, Dey AK. Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing. ACM Transactions on Computer-Human Interaction 2021;28(1):1
    CrossRef
  201. Wang Y, Ren X, Liu X, Zhu T. Examining the Correlation Between Depression and Social Behavior on Smartphones Through Usage Metadata: Empirical Study. JMIR mHealth and uHealth 2021;9(1):e19046
    CrossRef
  202. Wen H, Sobolev M, Vitale R, Kizer J, Pollak JP, Muench F, Estrin D. mPulse Mobile Sensing Model for Passive Detection of Impulsive Behavior: Exploratory Prediction Study. JMIR Mental Health 2021;8(1):e25019
    CrossRef
  203. Aubourg T, Demongeot J, Provost H, Vuillerme N. Exploitation of Outgoing and Incoming Telephone Calls in the Context of Circadian Rhythms of Social Activity Among Elderly People: Observational Descriptive Study. JMIR mHealth and uHealth 2020;8(11):e13535
    CrossRef
  204. He-Yueya J, Buck B, Campbell A, Choudhury T, Kane JM, Ben-Zeev D, Althoff T. Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability. npj Schizophrenia 2020;6(1)
    CrossRef
  205. Low CA. Harnessing consumer smartphone and wearable sensors for clinical cancer research. npj Digital Medicine 2020;3(1)
    CrossRef
  206. Asuzu K, Rosenthal MZ. Mobile device use among inpatients on a psychiatric unit: A preliminary study. Psychiatry Research 2021;297:113720
    CrossRef
  207. Hafiz P, Miskowiak KW, Maxhuni A, Kessing LV, Bardram JE. Wearable Computing Technology for Assessment of Cognitive Functioning of Bipolar Patients and Healthy Controls. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2020;4(4):1
    CrossRef
  208. Martinez-Martin N, Dasgupta I, Carter A, Chandler JA, Kellmeyer P, Kreitmair K, Weiss A, Cabrera LY. Ethics of Digital Mental Health During COVID-19: Crisis and Opportunities. JMIR Mental Health 2020;7(12):e23776
    CrossRef
  209. Gutierrez LJ, Rabbani K, Ajayi OJ, Gebresilassie SK, Rafferty J, Castro LA, Banos O. Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management. International Journal of Environmental Research and Public Health 2021;18(3):1327
    CrossRef
  210. Elhai JD, Sapci O, Yang H, Amialchuk A, Rozgonjuk D, Montag C. Objectively‐measured and self‐reported smartphone use in relation to surface learning, procrastination, academic productivity, and psychopathology symptoms in college students. Human Behavior and Emerging Technologies 2021;
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.4273):

  1. Dagum P, Montag C. Digital Phenotyping and Mobile Sensing. 2019. Chapter 2:13
    CrossRef
  2. Derksen JJL. Preventie psychische aandoeningen. 2018. Chapter 2:31
    CrossRef
  3. Lee H, Cho A, Jo Y, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 212:1332
    CrossRef
  4. Vayena E, Gasser U. The Ethics of Biomedical Big Data. 2016. Chapter 2:17
    CrossRef
  5. Lee H, Jo Y, Kim H, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 219:1377
    CrossRef
  6. . The Cambridge Handbook of Research Methods in Clinical Psychology. 2020. Part VI:299
    CrossRef
  7. Losada DE, Crestani F. Experimental IR Meets Multilinguality, Multimodality, and Interaction. 2016. Chapter 3:28
    CrossRef
  8. Ferguson SG, Jahnel T, Elliston K, Shiffman S. The Cambridge Handbook of Research Methods in Clinical Psychology. 2020. 23:301
    CrossRef
  9. Chanchaichujit J, Tan A, Meng F, Eaimkhong S. Healthcare 4.0. 2019. Chapter 2:17
    CrossRef
  10. Fang Y, Mao R. Depressive Disorders: Mechanisms, Measurement and Management. 2019. Chapter 1:1
    CrossRef
  11. Maglogiannis I, Zlatintsi A, Menychtas A, Papadimatos D, Filntisis PP, Efthymiou N, Retsinas G, Tsanakas P, Maragos P. Artificial Intelligence Applications and Innovations. 2020. Chapter 25:293
    CrossRef
  12. Cho A, Lee H, Hwang H, Jo Y, Whang M. Advances in Computer Science and Ubiquitous Computing. 2018. Chapter 218:1371
    CrossRef
  13. Klaas VC, Calatroni A, Hardegger M, Guckenberger M, Theile G, Tröster G. Wireless Mobile Communication and Healthcare. 2017. Chapter 28:207
    CrossRef
  14. Thakur SS, Roy RB. Computational Intelligence: Theories, Applications and Future Directions - Volume I. 2019. Chapter 10:119
    CrossRef
  15. Rozgonjuk D, Elhai JD, Hall BJ. Digital Phenotyping and Mobile Sensing. 2019. Chapter 11:185
    CrossRef
  16. Rabbi M. Encyclopedia of Behavioral Medicine. 2020. Chapter 102004-1:1
    CrossRef
  17. Cummins N, Matcham F, Klapper J, Schuller B. Artificial Intelligence in Precision Health. 2020. :231
    CrossRef
  18. Duke , Montag C. Internet Addiction. 2017. Chapter 21:359
    CrossRef
  19. Pérez-Vereda A, Flores-Martín D, Canal C, Murillo JM. Gerontechnology. 2019. Chapter 1:3
    CrossRef
  20. Theilig M, Blankenhagel KJ, Zarnekow R. Information Systems and Neuroscience. 2019. Chapter 20:163
    CrossRef
  21. Wolfer J. Online Engineering & Internet of Things. 2018. Chapter 63:672
    CrossRef
  22. Rabbi M, Hane Aung M, Choudhury T. Mobile Health. 2017. Chapter 26:519
    CrossRef
  23. Singh VK, Ghosh I. Encyclopedia of Behavioral Medicine. 2018. Chapter 102005-1:1
    CrossRef
  24. Rustagi A, Manchanda C, Sharma N, Kaushik I. International Conference on Innovative Computing and Communications. 2021. Chapter 3:19
    CrossRef
  25. Castro LA, Rodríguez MD, Martínez F, Rodríguez L, Andrade G, Cornejo R. Intelligent Data Sensing and Processing for Health and Well-Being Applications. 2018. :3
    CrossRef
  26. Singh VK, Ghosh I. Encyclopedia of Behavioral Medicine. 2020. Chapter 102005:218
    CrossRef
  27. Rabbi M. Encyclopedia of Behavioral Medicine. 2020. Chapter 102004:1632
    CrossRef
  28. Harari GM, Stachl C, Müller SR, Gosling SD. The Handbook of Personality Dynamics and Processes. 2021. :763
    CrossRef
  29. Tushar AK, Kabir MA, Ahmed SI. Signal Processing Techniques for Computational Health Informatics. 2021. Chapter 11:247
    CrossRef