Published on in Vol 9, No 1 (2007):

Assessing Consumer Health Vocabulary Familiarity: An Exploratory Study

Assessing Consumer Health Vocabulary Familiarity: An Exploratory Study

Assessing Consumer Health Vocabulary Familiarity: An Exploratory Study

Authors of this article:

Alla Keselman ;   Tony Tse ;   Jon Crowell ;   Allen Browne ;   Long Ngo ;   Qing Zeng

Journals

  1. Wong-Parodi G, Bruine de Bruin W. Informing Public Perceptions About Climate Change: A ‘Mental Models’ Approach. Science and Engineering Ethics 2017;23(5):1369 View
  2. Deuster L, Christopher S, Donovan J, Farrell M. A Method to Quantify Residents’ Jargon Use During Counseling of Standardized Patients About Cancer Screening. Journal of General Internal Medicine 2008;23(12):1947 View
  3. Wu D, Xin C, Bindhu S, Xu C, Sachdeva J, Brown J, Jung H. Clinician Perspectives and Design Implications in Using Patient-Generated Health Data to Improve Mental Health Practices: Mixed Methods Study. JMIR Formative Research 2020;4(8):e18123 View
  4. Kind E, Fowles J, Craft C, Kind A, Richter S. No Change in Physician Dictation Patterns When Visit Notes Are Made Available Online for Patients. Mayo Clinic Proceedings 2011;86(5):397 View
  5. Willinsky J, Quint-Rapoport M. How Complementary and Alternative Medicine Practitioners Use PubMed. Journal of Medical Internet Research 2007;9(2):e19 View
  6. Damman O, van den Hengel Y, van Loon A, Rademakers J. An International Comparison of Web-based Reporting About Health Care Quality: Content Analysis. Journal of Medical Internet Research 2010;12(2):e8 View
  7. Zhang J, Wolfram D, Wang P, Hong Y, Gillis R. Visualization of health‐subject analysis based on query term co‐occurrences. Journal of the American Society for Information Science and Technology 2008;59(12):1933 View
  8. Penaranda E, Diaz M, Noriega O, Shokar N. Evaluation of Health Literacy among Spanish-Speaking Primary Care Patients Along the US–Mexico Border. Southern Medical Journal 2012;105(7):334 View
  9. Puspitasari I, Moriyama K, Fukui K, Numao M. Effects of Individual Health Topic Familiarity on Activity Patterns During Health Information Searches. JMIR Medical Informatics 2015;3(1):e16 View
  10. Kandula S, Ancker J, Kaufman D, Currie L, Zeng-Treitler Q. A new adaptive testing algorithm for shortening health literacy assessments. BMC Medical Informatics and Decision Making 2011;11(1) View
  11. Franck M, Foulon V, Van Vaerenbergh L. ABOP, the automatic patient information leaflet optimizer: Evaluation of a tool in development. Patient Education and Counseling 2011;83(3):411 View
  12. Hou L, Kang H, Liu Y, Li L, Li J. Mining and standardizing chinese consumer health terms. BMC Medical Informatics and Decision Making 2018;18(S5) View
  13. Zeng-Treitler Q, Goryachev S, Tse T, Keselman A, Boxwala A. Estimating Consumer Familiarity with Health Terminology: A Context-based Approach. Journal of the American Medical Informatics Association 2008;15(3):349 View
  14. Pander Maat H, Lentz L. Improving the usability of patient information leaflets. Patient Education and Counseling 2010;80(1):113 View
  15. Keselman A, Smith C, Divita G, Kim H, Browne A, Leroy G, Zeng-Treitler Q. Consumer Health Concepts That Do Not Map to the UMLS: Where Do They Fit?. Journal of the American Medical Informatics Association 2008;15(4):496 View
  16. Paukkeri M, Ollikainen M, Honkela T. Assessing user-specific difficulty of documents. Information Processing & Management 2013;49(1):198 View
  17. Pander Maat H, Essink-Bot M, Leenaars K, Fransen M. A short assessment of health literacy (SAHL) in the Netherlands. BMC Public Health 2014;14(1) View
  18. Sander U, Kolb B, Taheri F, Patzelt C, Emmert M. Verstehen Laien Informationen über die Krankenhausqualität? Eine empirische Überprüfung am Beispiel der risikoadjustierten Mortalität. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 2017;127-128:21 View
  19. Lau A, Coiera E. Impact of Web Searching and Social Feedback on Consumer Decision Making: A Prospective Online Experiment. Journal of Medical Internet Research 2008;10(1):e2 View
  20. MacLean D, Heer J. Identifying medical terms in patient-authored text: a crowdsourcing-based approach. Journal of the American Medical Informatics Association 2013;20(6):1120 View
  21. Wong-Parodi G, Bruine de Bruin W, Canfield C. Effects of simplifying outreach materials for energy conservation programs that target low-income consumers. Energy Policy 2013;62:1157 View
  22. Lee S, Stucky B, Lee J, Rozier R, Bender D. Short Assessment of Health Literacy—Spanish and English: A Comparable Test of Health Literacy for Spanish and English Speakers. Health Services Research 2010;45(4):1105 View
  23. Yu B, He Z, Xing A, Lustria M. An Informatics Framework to Assess Consumer Health Language Complexity Differences: Proof-of-Concept Study. Journal of Medical Internet Research 2020;22(5):e16795 View
  24. Banbury A, Parkinson L, Nancarrow S, Dart J, Gray L, Buckley J. Multi-site videoconferencing for home-based education of older people with chronic conditions: the Telehealth Literacy Project. Journal of Telemedicine and Telecare 2014;20(7):353 View
  25. Sharon A, Baram-Tsabari A. Measuring mumbo jumbo: A preliminary quantification of the use of jargon in science communication. Public Understanding of Science 2014;23(5):528 View
  26. van Mens H, Martens S, Paiman E, Mertens A, Nienhuis R, de Keizer N, Cornet R. Diagnosis clarification by generalization to patient-friendly terms and definitions: Validation study. Journal of Biomedical Informatics 2022;129:104071 View
  27. Zhang Z, Kmoth L, Luo X, He Z. User-Centered System Design for Communicating Clinical Laboratory Test Results: Design and Evaluation Study. JMIR Human Factors 2021;8(4):e26017 View
  28. Huang J, Wu X, Wen J, Huang C, Luo M, Liu L, Zheng Y. Evaluating Familiarity Ratings of Domain Concepts with Interpretable Machine Learning: A Comparative Study. Applied Sciences 2023;13(23):12818 View
  29. Sakai Y. Improvement and evaluation of readability of Japanese health information texts. Library and Information Science 2011;65:1 View
  30. Levy D, Jordan H, Lalor J, Smirnova J, Hu W, Liu W, Yu H. Individual factors that affect laypeople's understanding of definitions of medical jargon. Health Policy and Technology 2024;13(6):100932 View

Books/Policy Documents

  1. Friedman C, Elhadad N. Biomedical Informatics. View
  2. Col N, Correa-de-Araujo R. Clinical Decision Support. View
  3. Keselman A, Massengale L, Ngo L, Browne A, Zeng Q. Biological and Medical Data Analysis. View
  4. Vezzani F, Di Nunzio G. Digital Libraries: Supporting Open Science. View
  5. Puspitasari I, Fukui K, Moriyama K, Numao M. PRICAI 2014: Trends in Artificial Intelligence. View
  6. Morato J, Campillo A, Sanchez-Cuadrado S, Iglesias A. Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1. View
  7. Demner-Fushman D, Elhadad N, Friedman C. Biomedical Informatics. View