Published on in Vol 25 (2023)
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/34474, first published
.
Journals
- Guo K, Xiao Y, Deng W, Zhao G, Zhang J, Liang Y, Yang L, Liao G. Speech disorders in patients with Tongue squamous cell carcinoma: A longitudinal observational study based on a questionnaire and acoustic analysis. BMC Oral Health 2023;23(1) View
- Ksibi A, Zakariah M, Menzli L, Saidani O, Almuqren L, Hanafieh R. Electroencephalography-Based Depression Detection Using Multiple Machine Learning Techniques. Diagnostics 2023;13(10):1779 View
- Shekar P, Mathew A, Yeswanth P, Deivalakshmi S. A combined deep CNN-RNN network for rainfall-runoff modelling in Bardha Watershed, India. Artificial Intelligence in Geosciences 2024;5:100073 View
- Beniwal R, Saraswat P. A Hybrid BERT-CNN Approach for Depression Detection on Social Media Using Multimodal Data. The Computer Journal 2024;67(7):2453 View
- Humayun M, Shuja J, Abas P. A review of social background profiling of speakers from speech accents. PeerJ Computer Science 2024;10:e1984 View
- Shin J, Bae S. Use of voice features from smartphones for monitoring depressive disorders: Scoping review. DIGITAL HEALTH 2024;10 View
- Siegel J, Cohen A, Szabo S, Tomioka S, Opler M, Kirkpatrick B, Hopkins S. Enrichment using speech latencies improves treatment effect size in a clinical trial of bipolar depression. Psychiatry Research 2024;340:116105 View
- Miyata S. Integration of basic and clinical researches to develop the biomarker of depression. Folia Pharmacologica Japonica 2024;159(5):311 View
- Beniwal R, Saraswat P. A hybrid BERT-CPSO model for multi-class depression detection using pure hindi and hinglish multimodal data on social media. Computers and Electrical Engineering 2024;120:109786 View
- Li X, Dong Y, Yi Y, Liang Z, Yan S. Hypergraph Neural Network for Multimodal Depression Recognition. Electronics 2024;13(22):4544 View
- Almutairi S, Abohashrh M, Razzaq H, Zulqarnain M, Namoun A, Khan F. A Hybrid Deep Learning Model for Predicting Depression Symptoms From Large-Scale Textual Dataset. IEEE Access 2024;12:168477 View
Books/Policy Documents
- Verma R, Kumar G, Yadav A. Proceedings of International Conference on Recent Innovations in Computing. View