Published on in Vol 24, No 7 (2022): July

Preprints (earlier versions) of this paper are available at, first published .
Studying the Effect of Long COVID-19 Infection on Sleep Quality Using Wearable Health Devices: Observational Study

Studying the Effect of Long COVID-19 Infection on Sleep Quality Using Wearable Health Devices: Observational Study

Studying the Effect of Long COVID-19 Infection on Sleep Quality Using Wearable Health Devices: Observational Study

Original Paper

1Tulane University School of Medicine, New Orleans, LA, United States

2Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States

Corresponding Author:

Nassir Marrouche, MD

Tulane University School of Medicine

Suite A128

1324 Tulane Ave

New Orleans, LA, 70112

United States

Phone: 1 5049883072


Background: Patients with COVID-19 have increased sleep disturbances and decreased sleep quality during and after the infection. The current published literature focuses mainly on qualitative analyses based on surveys and subjective measurements rather than quantitative data.

Objective: In this paper, we assessed the long-term effects of COVID-19 through sleep patterns from continuous signals collected via wearable wristbands.

Methods: Patients with a history of COVID-19 were compared to a control arm of individuals who never had COVID-19. Baseline demographics were collected for each subject. Linear correlations among the mean duration of each sleep phase and the mean daily biometrics were performed. The average duration for each subject’s total sleep time and sleep phases per night was calculated and compared between the 2 groups.

Results: This study includes 122 patients with COVID-19 and 588 controls (N=710). Total sleep time was positively correlated with respiratory rate (RR) and oxygen saturation (SpO2). Increased awake sleep phase was correlated with increased heart rate, decreased RR, heart rate variability (HRV), and SpO2. Increased light sleep time was correlated with increased RR and SpO2 in the group with COVID-19. Deep sleep duration was correlated with decreased heart rate as well as increased RR and SpO2. When comparing different sleep phases, patients with long COVID-19 had decreased light sleep (244, SD 67 vs 258, SD 67; P=.003) and decreased deep sleep time (123, SD 66 vs 128, SD 58; P=.02).

Conclusions: Regardless of the demographic background and symptom levels, patients with a history of COVID-19 infection demonstrated altered sleep architecture when compared to matched controls. The sleep of patients with COVID-19 was characterized by decreased total sleep and deep sleep.

J Med Internet Res 2022;24(7):e38000



Although COVID-19 is primarily known as a pulmonary disease [1], literature suggests significant consequences regarding daily activities and mental health due to the infection itself or associated quarantine [2]. Moreover, reports indicate increased incidences of psychologic and psychiatric conditions during the pandemic such as sleep disturbances and decreased accessibility to health care [3,4]. Thus, there is a need for remote continuous monitoring, telemedicine, and digital health monitoring systems to bridge the gap between patients and physicians [5].

The sleep cycle is traditionally divided in two phases: rapid eye movement (REM) sleep and nonrapid eye movement (NREM). Furthermore, NREM sleep is divided into the three subphases of (1) awake, (2) light, and (3) deep sleep. Human body usually cycles through these phases 4 to 6 times per night with 90 minutes in each stage [6]. Initially, sleep has been studied using polysomnography, which is a multisensor system that has been the gold standard for analyzing sleep stages and sleep-related disorders [7]. However, polysomnography has many drawbacks, such as the need for a hospital stay and its high-cost logistics such as the use of complex hardware needed for electroencephalographic, electromyographic, and electrooculographic assessments. All those factors can alter physiological sleep architecture and bias the results. Consequently, less than half of sleep studies nowadays are conducted in formal sleep facilities [8]. Having said that, wearable technology has been developed in the last decade, which consists of smart devices or gadgets worn close to or in contact with the skin used to capture biometric data [9]. With the recent trend of wearables, we have seen the development of photoplethysmography (PPG) technology to analyze different sleep phases, avoiding challenges that accompany the traditional polysomnography exam. In fact, reflective light emitted by the wearable device allows to measure blood volume changes in the vessels, which allows for the accurate measurement of heart rate (HR) and heart rate variability (HRV) [10]. HRV serves as a surrogate to estimate the effect of both sympathetic and parasympathetic nervous systems on the cardiovascular system. In addition, activities of both parasympathetic and sympathetic nervous systems vary in different sleep phases. For example, increased parasympathetic nervous system activity and therefore decreased HR was noticed in deeper stages of sleep [11,12]. Consequently, machine learning algorithms have been developed using the relationship between biometrics (such as HR and HRV) and sleep cycle to define sleep phases using PPG [13-16].

Long COVID-19 syndrome is defined as symptoms that persist after acute COVID-19 infection; however, the definitions vary by literature [17-19]. Previous studies have shown increased sleep disturbances and decreased sleep quality during and after COVID-19 infection [20,21]. However, those studies focused on qualitative analyses based on subjective measurements and survey responses rather than quantitative data [22,23]. Hence, in this paper, we study and evaluate the long-term effects of COVID-19 on sleep patterns using the continuously monitored metrics from wristband devices.

Study Design

Wearables to Investigate the Long Term Cardiovascular and Behavioral Impacts of COVID-19 (WEAICOR) is a prospective observational study of subjects 18 years or older who were monitored using the Biostrap wearable or wristband device. The study aims to identify the impact of long COVID-19 infection on sleep using wearables. In this analysis, we sought to compare continuous data recorded using a wearable device between patients who were diagnosed and recovered from COVID-19 and controls who were never diagnosed with the disease.

Patient’s enrollment flowchart is represented in Figure 1. After eligibility screening and signing electronic consent forms, all subjects were sent a Biostrap device by mail to continuously monitor their biometric data. Biometric parameters included HR, HRV, respiratory rate (RR), and oxygen saturation (SpO2). Device Instructions tailored to the study were provided by phone call by the study coordinator, along with a recorded video detailing the steps to activate the device with the mobile app.

Figure 1. Study flowchart.
View this figure

Ethics Approval

WEAICOR study was approved by Tulane University Institution Review Board on June 09, 2020 (Study #2020-678).

Study Population

In this analysis, patients who had COVID-19 and recovered (study arm) will be compared to a control arm of participants who never had COVID-19 or associated symptoms. The study arm recruitment was carried out through flyers and advertisements on different platforms of social media along with mass emails generated to the Tulane staff and student body. A total of 200 participants were assessed for eligibility by September 2021. The control data were collected from a group of participants who opted in to an internal Biostrap study from April 12, 202, to July 31, 2020, as a part of their COVID-19 initiative. The participants received a baseline questionnaire collecting demographic and medical history data. Additionally, a daily survey was sent to all individuals to identify any COVID-19 symptom or positive COVID-19 case in each participant’s household. Only individuals who consistently answered “No” regarding a positive COVID-19 diagnosis and denied related symptoms were included in the control group. Additionally, the existing users were willing to contribute their deidentified data for research. We secured informed consent forms and listed Tulane University as an organization with data access.

Biostrap Device

Biostrap is a PPG-based smartband that records patients’ vitals at rest with 5-minute intervals and generates graphic results and reports on the Biostrap mobile app. PPG is an optical technique for detecting blood volume changes within the blood vessels by the changes in the light received from the photodiode to estimate physiological parameters. Biometrics such as HR, HRV, RR, and SpO2 along with others related to the cardiovascular and autonomic nervous systems can be computed noninvasively using collected infrared signals. When paired with infrared signals, a red-light signal enables SpO2 estimation. The combination of all those parameters along with arm movement enables us to classify sleep cycle into the 3 different phases of awake sleep, light sleep, and deep sleep. Example of biometric recordings (Figure 2) and sleep analysis recordings (Figure 3) are provided for simplification. Figure 2 shows biometrics recordings during a single night for a patient with COVID-19. Figure 3 describes the summary report and time spent in different sleep phases in a single night for a patient with COVID-19. PPG and accelerometer data collected from the wrist are transferred by the mobile app to the Biostrap cloud server, where they undergo signal processing and machine learning algorithms to generate physiological data at rest and transfer it to Tulane’s data warehouse server. The accuracy and reproducibility of the Biostrap device in assessing basic physiological data have already been reported in previously published studies [24,25].

Figure 2. Recording example of biometrics during a night for a patient with long COVID-19. (a) RESP: respiratory rate (respirations per minute); (b) SpO2: saturation of oxygen (%); (c) HR: heart rate (beats per minute); and (d) HRV: heart rate variability (beats per minute).
View this figure
Figure 3. Recording example of sleep summary and sleep phases during a night for a patient with long COVID-19. HR: heart rate; HRV: heart rate variability.
View this figure

Patient Follow-up

The research nurse and coordinator assigned to the study used Biostrap’s remote data to ensure adequate data generation, patient compliance, and technical troubleshooting. Throughout the study, they actively followed up with the patients through phone calls and emails to address any problem or concern.

Data Analysis

The following baseline characteristics were collected for each participant: age, gender, BMI, comorbidities, educational level, and COVID-19 symptoms severity level. The means of these baseline characteristics were calculated for COVID-19 and controls and compared using 2-sample t test (2-tailed).

For each participant, the average duration in different sleep phases per night (awake, light, deep, and total) was calculated. For each sleep phase, we took the number of minutes per phase per day and calculated the average over the total number of days. Pearson bivariate linear correlations among the mean duration in sleep phases and means of biometrics (HR, HRV, RR, and SpO2) were performed for COVID-19, controls, and the whole study population (specified as “Cohort” in the results section) to evaluate the association between the different components of the autonomic system and sleep cycle (Figure 4). The direction of changes in biometrics and duration of sleep phases will allow us to understand more the interaction between these 2 systems.

In addition, the participants from the whole cohort were divided into groups depending on their biometrics average during sleep (higher HR: >80 beats per minute vs lower HR: <80 beats per minute [26]; higher HRV: >20 milliseconds vs lower HRV: <20 milliseconds; and higher RR: >20 breaths per minute vs lower RR: <20 breaths per minute). Sleep phases (total, awake, light, and deep sleep) between the different groups were compared using Mann-Whitney U test. Patients with low HRV (n=27) and high RR (n=0) were little in number, and therefore the analysis was not statically significant for HRV and was not feasible for RR.

The mean measurements for each participant’s total sleep time and sleep phases per night (awake, light, deep, and total) were calculated and weighted proportionally to the number of days each participant submitted data. For example, a participant with 25 nights of sleep data would have half of the weight of one with 50 nights of sleep data. From that weighted set, the median of each group’s sleep times was taken and recorded, as the distributions of mean sleep times across both groups departed significantly from normality according to the Shapiro Wilk test. Distributions of sleep times in the control group and the group with COVID-19 were compared using the 2-Sample Wilcoxon (Mann-Whitney U) test. The same analysis was conducted in an unweighted manner, where, for example, a subject with 25 nights of sleep data had just as much an effect on the test as a subject with 50 nights of sleep data. Two-sided P values of less than .05 were considered significant.

To mitigate potential selection bias arising from the observational nonrandomized study design, we applied propensity score matching and achieved a more balanced control group. During the matching process, the study participants with a history of COVID-19 were matched 1:1 to the participants without any history of COVID-19 by calculating the propensity score of the participants having COVID-19. The propensity score was carried out by estimating the probability of each participant having a history of COVID-19 based on age, BMI, and gender through multivariable logistic classifier.

Figure 4. Correlations between different sleep phases and biometrics. Corr: correlation with the whole cohort; HR: heart rate; HRV: heart rate variability; RR: respiratory rate; SpO2: oxygen saturation. *P<.05; **P<.01; ***P<.001.
View this figure

Baseline Characteristics

We included 122 patients in the group with COVID-19 and 588 participants in the control group. Patients in the COVID-19 arm were younger than controls (of 42.8, SD 15.5 vs 46.0, SD 14.0 years; P=.02). Patients with COVID-19 were 32% (39/122) female, and the controls were 22% (129/588) female (P=.33). There were no other significant differences in baseline characteristics and comorbidities between the 2 arms. Notably, both populations tended to be young and healthy, with most participants having few or no comorbidities. In the group with COVID-19, most of the patients considered (n=112, 92%) were not hospitalized during their COVID-19 diagnosis. Data were collected 171 (SD 114) days after their COVID-19 diagnosis. All baseline characteristics for both COVID-19 and control groups are represented in Table 1.

Table 1. Baseline demographic and clinical characteristics of COVID-19 and control arms.
CharacteristicsCOVID-19 (n=122)Control (n=588)P value
Age (years) mean (SD)41.32 (15.7)45.99 (14.0).001
Gender, n (%).33

Male76 (62)453 (77)

Female46 (38)135 (23)
BMI (kg/m2)28.7 (8.6)27.1 (5.7).001
Race or ethnicity, n (%).36

White71 (58)465 (79)

African American or Black20 (16.5)3 (0.5)

Asian12 (10)29 (5)

Latino or Hispanic5 (4.5)41 (7)

Others13 (11)50 (8.5)
Comorbidity, n (%).96

None88 (72)506 (86)

Diabetes6 (5)12 (2)

Immune system deficiencies or HIV1 (1)12 (2)

Heart conditions4 (3)12 (2)

Asthma or chronic lung disease15 (12)24 (4)

Extreme obesity5 (4)18 (3)

Cancer treatment4 (3)6 (1)
Education level, n (%).21

Bachelor’s degree27 (22)247 (42)

Some college30 (24)65 (11)

Associate degree16 (13)41 (7)

Master’s degree28 (23)112 (19)

Doctorate1 (1)35 (6)

Professional10 (8)59 (10)

Others11 (9)29 (5)

Average Follow-up of the 2 Groups Using the Biostrap Device

Controls were followed up for 64 (SD 28) days and patients with long COVID-19 were followed up for 55 (SD 66) days. For the weighted analysis, 37,709 recorded days (103.2 years) were collected for the control group and 7228 recorded days (19.8 years) were collected for patients with COVID-19.

Correlations Between Biometrics and the Different Phases of the Sleeping Cycle

All the correlations between sleep phases and biometrics are summarized in Figure 4.

Total Sleep Cycle

Total sleep time was correlated with RR (r=0.084, P≤.05 for cohort and r=0.119, P≤.01 for controls) and SpO2 (r=0.076, P≤.05 for cohort and r=0.123, P≤.01 for controls). Total sleep time was not significantly correlated with HR (P>.05) and HRV (P>.05).

Awake Sleep Phase

Significant correlations were found between HR (r=0.109, P≤.01 for cohort and r=0.148, P<.001 for controls), RR (r=–0.201, P<.001 for cohort and r=–0.161, P<.001 for controls), HRV (r=–0.099, P≤.01 for cohort and r=–0.105, P≤.05 for controls), SpO2 (r=–0.205, P<.001 for cohort and r=–0.162, P<.001 for controls), and awake sleep phase.

Light Sleep Phase

For light sleep phase, only RR (r=0.358, P<.001) and SpO2 (r=0.249, P<.001) in the COVID-19 group were found to be correlated with the time spent in this phase. There was no significant correlation between light sleep and HR nor between light sleep and HRV (P>.05).

Deep Sleep Phase

As for deep sleep, the time spent in this phase was correlated with HR (r=–0.093, P≤.05 for cohort and r=–0.098, P≤.05 for controls), RR (r=0.121, P≤.01 for cohort and r=0.108, P≤.01 for controls), and SpO2 (r=0.106, P<.001 for cohort and r=0.094, P≤.01 for controls). However, it did not significantly correlate with HRV (P>.05). As seen in Figure 4, awake sleep significantly correlates with HR in all participants (r=0.121, P<.01), in the control group (r=0.148, P<.001), but not in patients with COVID-19 (r=0.097, P>.05); awake sleep also significantly correlates with RR in all participants (r=–0.205, P<.001), in the control group (r=–0.161, P<.001), and in patients with COVID-19 (r=–0.252, P<.01); awake sleep also correlates with HRV in all participants (r=–0.094, P<.05), in the control group (r=–0.094, P<.05), but not in patients with COVID-19 (r=–0.010, P>.05); awake sleep correlates with SpO2 in all participants (r=–0.200, P<.001), in the control group (r=–0.162, P<.001), and in patients with COVID-19 (r=–0.187, P<.05). The same interpretation can be drawn from Figure 4 for light sleep, deep sleep, and total sleep.

Comparison of Sleep Cycle in Patients With Lower vs Higher HR

After dividing the cohort into patients with higher HR (50/710 patients, 7%) and lower HR (660/710 patients, 93%), patients with higher HR had more time in awake sleep (65 minutes vs 55 minutes, P=.02) and less time in light (232 minutes vs 258 minutes, P=.001), deep (128 minutes vs 135 minutes, P=.1), and total sleep (425 minutes vs 449 minutes, P=.006; Figure 5). The number of patients and the different results are listed in Table 2.

Figure 5. Summary representation of propensity score matching for age, BMI, and gender. F: Female; M: Male. BMI: body mass index.
View this figure
Table 2. Different biometric groups with respective number of patients.
GroupNumber of patientsAwake sleep phase (min)aLight sleep phase (min)bDeep sleep phase (min)cTotal sleep phase (min)d
Higher HRe (>80 beats/min)5065232128425
Lower HR (<80 beats/min)66055258135449
Higher RRf (>20 respirations per minute)0g
Lower RR (<20 respirations per minute)710
Higher HRVh (>20ms)683
Lower HRV (<20ms)27





eHR: heart rate.

fRR: respiratory rate.

gStatistical analysis was not performed to assess the differences between these groups because of the low number of patients in Higher RR and Lower HRV groups.

hHRV: heart rate variability.

Comparison of Sleep Length Between Patients With COVID-19 and Controls

Unweighted Analysis

In the unweighted analysis, patients with long COVID-19 had less total sleep time when compared to controls (433, SD 85 vs 450, SD 68; P<.001).

Weighted Analysis

In the weighted analysis, patients with long COVID-19 had statistically but not clinically significant increased total sleep time when compared to control group (451.4, SD 65 vs 451.7, SD 87 minutes, P<.001).

Propensity Match Analysis

After performing a propensity match analysis, 122 patients with COVID-19 were compared to 122 matched controls. Total sleep time was found to be decreased in the group with COVID-19 compared to controls (433, SD 85 vs 450, SD 68; P=.004). A schematic representation of the data distribution before and after propensity score matching was shown for better visualization (Figure 5).

Comparison of Sleep Cycle Phases Between Patients With COVID-19 and Controls

Unweighted Analysis

In the unweighted analysis, there was no statistical awake sleep time difference between the 2 groups (52, SD 32 for controls vs 56, SD 31 for cohort; P=.4). However, patients with long COVID-19 had decreased light sleep (244, SD 67 vs 258, SD 67; P=.003) and decreased deep sleep (123, SD 66 vs 128, SD 58; P=.02; Figure 6).

Figure 6. Difference in weighted sleep phases between different groups. High heart rate (HR): >80 beats per minute. Low HR: <80 beats per minute; *P<.05.
View this figure
Weighted Analysis

When comparing weighted different sleep phases, patients with long COVID-19 had increased awake sleep time (62, SD 25 vs 52, SD 32; P<.001) decreased light sleep time (251, SD 82 vs 260, SD 64; P<.001), and decreased deep sleep (126, SD 71 vs 131, SD 59; P<.001).

Propensity Score Matching

After matching the 2 groups for age, sex, and BMI, patients with COVID-19 have decreased deep sleep when compared to controls (123, SD 66 vs 128, SD 57; P<.004). However, the differences in light sleep (244, SD 67 vs 259, SD 67; P=.39) and awake sleep (56, SD 31 vs 57, SD 32; P=.71) were no longer significant.


In our study, we report 2 major findings. First, increased total sleep time and time spent in deep sleep were associated with increased RR and SpO2, and decreased HR in the full cohort. Second, the group with long COVID-19 had altered sleep architecture characterized by decreased total and deep sleep times when compared to matched controls.

Association Between Biometrics and Sleep Phases

Decreased oxygen saturation during sleep can be due to different pathologies and has the potential to inflict significant negative physiological and psychological consequences [27]. In our cohort, decreased RR and SpO2 were associated with increased time in awake sleep phase. Moreover, increased RR and SpO2 were associated with increased total sleep time and deep sleep. Our findings suggest difficulty transitioning into deep sleep of patients with decreased respiratory function and thus the need for good oxygenation and respiratory function to maintain a physiological sleep cycle. This is in line with the increased sleeping disturbances noticed in patients with severe COVID-19. Huang et al [28] showed that the risk of severe infection was 6 to 8 times more associated with decreased sleep status and reduced sleeping hours [28]. Additionally, the reduction in average daily sleep time significantly increased the likelihood of infection severity, stressing on the intertwined relationship between sleep and respiratory function [28]. However, the results reported in this study were extracted from self-reported questionnaires in comparison to our quantitative results. Moreover, increased RR and SpO2 in the group with COVID-19 was correlated with increased time spent in light sleep. Light sleep, which is one of the different phases of NREM sleep, was found to have an important role in memory formation and consolidation as well as in motor skill speed and performance [29,30]. Therefore, the association of optimal respiratory function during sleep and improved sleep quality may improve activities of daily living and quality of life in addition to immunity and response to infections.

As for the autonomous system, increased HR and decreased HRV were correlated with increased time in awake phase, whereas decreased HR was correlated with increased time in deep sleep. Increased HR during sleep was associated with increased cardiovascular comorbidities [31]. This was widely studied in night-shift workers, who had misalignment between the endogenous circadian clock and the sleep schedule, leading to increased cardiovascular events [32]. Our data showing that participants with increased HR have increased time in awake sleep and less time in deep sleep might indicate a difficulty in transitioning from light to deep sleep among patients with increased HR. Disturbances in the configuration of these 2 systems may lead to adverse repercussions and clinical outcomes.

The key benefit of continuous monitoring with wearables lies in the capability to detect these vulnerable populations who may have early sleep or biometric disturbances. The collection of real-time data from wearables can allow the physician to manage patients at a very early stage. By combining data from biometrics and sleep phases, physicians will be able to have an overview on patients’ autonomic system activity. These findings, sometimes subclinical, will be useful as a significant decision support tool for physicians to employ preventative and personalized medicine even before diagnosing the problem.

Long COVID-19’s Effect on Sleep

Previous studies have shown increased psychological disturbances in addition to the physical component associated with COVID-19 infection [22,33]. In fact, decreased sleep quality and insomnia problems have been reported during the pandemic. However, most sleep-related studies focused primarily on health care workers rather than the general population [34,35]. For example, Zhang et al [35] found that almost one-third of health care workers had insomnia symptoms during the pandemic, and that the related factors included education level, isolation environment, and psychological stressors [35]. However, most of these studies were qualitative and survey-based rather than quantitative [22,23]. Thus, there was a need for a quantitative approach to assess long COVID-19’s effect on sleep.

In our study, participants in the group with long COVID-19 had increased awake sleep time and decreased light and deep sleep time. During sleep, the body secures restorative functions related to immunity [36], the cardiovascular system [37], and metabolic functions [38]. Alterations in non-REM sleep phases may therefore predispose health-related problems. In addition, altered sleep architecture was shown to increase stress levels by increasing stress hormones [39-42]. These findings especially after recovering from the infection support the fact that COVID-19 may present with long-standing symptoms such as autonomic and neurologic disturbances. This is in alignment with what is called “Long COVID-19” syndrome or “COVID-19 Brain fog,” which is characterized by fatigue, difficulty concentrating, and sleep disorders even after the acute infection [43].


Our study has several limitations. First, this is a single-center study, limiting the reproducibility of the results among a wider population. Second, baseline data regarding physiological state of participants with COVID-19 is not available as they did not have the device before COVID-19 infection. Third, the PPG technology used was not developed to accurately characterize REM sleep, and thus, REM sleep has been omitted from the analysis. Finally, the controls were recruited based on a patient-reported survey, and therefore they might have had COVID-19 without knowing.


Study participants with improved cardiovascular and respiratory functions had better sleep architecture. Moreover, patients who were diagnosed with COVID-19, including young and healthy patients, demonstrated altered sleep architecture when compared to matched controls. The sleeping data of patients with COVID-19 were characterized by decreased total sleep and deep sleep times. Future studies should evaluate the physical and psychological impact of sleep disturbance among patients with long COVID-19.


We thank the Brown foundation for providing support and funding for this study.

Data Availability

The data that support the findings of this study are available from the corresponding author, N Marrouche, upon reasonable request.

Conflicts of Interest

N Marrouche reports receiving grant support from Abbott, Medtronic, Biosense Webster, Boston Scientific and consulting fees from Preventice, Biosense Webster, Atricure lectures: Biotronik, Bristol Myers Squibb and Biosense Webster. MM, CHL, AHEH, CN, CP, N Makan, LD, YZ, NC, DLL, and TA declare no conflicts of interest.

  1. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020 Jul 09;383(2):120-128. [CrossRef]
  2. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet 2020 Mar;395(10227):912-920. [CrossRef]
  3. Öngür D, Perlis R, Goff D. Psychiatry and COVID-19. JAMA 2020 Sep 22;324(12):1149-1150. [CrossRef] [Medline]
  4. Khan S, Siddique R, Li H, Ali A, Shereen MA, Bashir N, et al. Impact of coronavirus outbreak on psychological health. J Glob Health 2020 Jun;10(1):010331 [FREE Full text] [CrossRef] [Medline]
  5. Gunasekeran DV, Tseng RMWW, Tham Y, Wong TY. Applications of digital health for public health responses to COVID-19: a systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digit Med 2021 Feb 26;4(1):40 [FREE Full text] [CrossRef] [Medline]
  6. Patel AK, Ready V, Araujo JF. Physiology, Sleep Stages. National Library of Medicine. 2022.   URL: [accessed 2022-06-28]
  7. Wolpert EA. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Arch Gen Psychiatry 1969 Feb 01;20(2):246. [CrossRef]
  8. Hirshkowitz M. Assessing sleep wearables and in-bedroom devices: CTA standards work. SlidePlayer. 2019.   URL: [accessed 2022-06-28]
  9. Nanjapan V, Liang H, Wang W, Man KL. Chapter 1 - Big Data: A Classification of Acquisition and Generation Methods. In: Big Data Analytics for Sensor-Network Collected Intelligence. Cambridge, MA, US: Academic Press; 2017:3-20.
  10. Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of photoplethysmography as a method to detect heart rate during rest and exercise. J Med Eng Technol 2015 Jun 26;39(5):264-271. [CrossRef] [Medline]
  11. Trinder J, Kleiman J, Carrington M, Smith S, Breen S, Tan N, et al. Autonomic activity during human sleep as a function of time and sleep stage. J Sleep Res 2001 Dec 13;10(4):253-264 [FREE Full text] [CrossRef] [Medline]
  12. Kryger M, Roth T, Dement WC. Principles and Practice of Sleep Medicine, Sixth Edition. Philadelphia, PA, US: Elsevier; 2017.
  13. Redmond SJ, de Chazal P, O'Brien C, Ryan S, McNicholas WT, Heneghan C. Sleep staging using cardiorespiratory signals. Somnologie 2007 Oct 11;11(4):245-256. [CrossRef]
  14. Domingues A, Paiva T, Sanches JM. Hypnogram and Sleep Parameter Computation From Activity and Cardiovascular Data. IEEE Trans. Biomed. Eng 2014 Jun;61(6):1711-1719. [CrossRef]
  15. Willemen T, Van Deun D, Verhaert V, Vandekerckhove M, Exadaktylos V, Verbraecken J, et al. An Evaluation of Cardiorespiratory and Movement Features With Respect to Sleep-Stage Classification. IEEE J. Biomed. Health Inform 2014 Mar;18(2):661-669. [CrossRef]
  16. Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J. Sleep stage classification with ECG and respiratory effort. Physiol Meas 2015 Oct;36(10):2027-2040. [CrossRef] [Medline]
  17. Callard F, Perego E. How and why patients made Long Covid. Soc Sci Med 2021 Jan;268:113426 [FREE Full text] [CrossRef] [Medline]
  18. Altmann DM, Boyton RJ. Decoding the unknowns in long covid. BMJ 2021 Feb 04;372:n132. [CrossRef] [Medline]
  19. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021 Jan 13;27(1):28-33. [CrossRef] [Medline]
  20. Targa ADS, Benítez ID, Moncusí-Moix A, Arguimbau M, de Batlle J, Dalmases M, et al. Decrease in sleep quality during COVID-19 outbreak. Sleep Breath 2021 Jun 29;25(2):1055-1061 [FREE Full text] [CrossRef] [Medline]
  21. Xiao H, Zhang Y, Kong D, Li S, Yang N. Social Capital and Sleep Quality in Individuals Who Self-Isolated for 14 Days During the Coronavirus Disease 2019 (COVID-19) Outbreak in January 2020 in China. Med Sci Monit 2020 Mar 12;26:e923921. [CrossRef]
  22. Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry Res 2020 Jun;288:112954 [FREE Full text] [CrossRef] [Medline]
  23. Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun 2020 Oct;89:531-542 [FREE Full text] [CrossRef] [Medline]
  24. Dur O, Rhoades C, Ng MS, Elsayed R, van Mourik R, Majmudar MD. Design Rationale and Performance Evaluation of the Wavelet Health Wristband: Benchtop Validation of a Wrist-Worn Physiological Signal Recorder. JMIR Mhealth Uhealth 2018 Oct 16;6(10):e11040 [FREE Full text] [CrossRef] [Medline]
  25. Gielen W, Longoria KA, van Mourik RA. Two cases of COVID-19 monitored by a wearable biosensor-a case report. Mhealth 2021 Oct;7:62-62 [FREE Full text] [CrossRef] [Medline]
  26. Nanchen D. Resting heart rate: what is normal? Heart 2018 Jul 30;104(13):1048-1049. [CrossRef] [Medline]
  27. Szabó K, Ihász F. [The effect of reduced oxygen saturation during sleep on depression]. Orv Hetil 2019 May;160(20):780-783. [CrossRef] [Medline]
  28. Huang B, Niu Y, Zhao W, Bao P, Li D. Reduced Sleep in the Week Prior to Diagnosis of COVID-19 is Associated with the Severity of COVID-19. NSS 2020 Nov;Volume 12:999-1007. [CrossRef]
  29. Hong J, Ha GE, Kwak H, Lee Y, Jeong H, Suh P, et al. Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Sci Rep 2020 Jun 01;10(1):8813 [FREE Full text] [CrossRef] [Medline]
  30. Walker MP, Brakefield T, Morgan A, Hobson J, Stickgold R. Practice with Sleep Makes Perfect. Neuron 2002 Jul;35(1):205-211. [CrossRef]
  31. Boudreau P, Yeh W, Dumont GA, Boivin DB. Circadian variation of heart rate variability across sleep stages. Sleep 2013 Dec 01;36(12):1919-1928 [FREE Full text] [CrossRef] [Medline]
  32. Frost P, Kolstad HA, Bonde JP. Shift work and the risk of ischemic heart disease - a systematic review of the epidemiologic evidence. Scand J Work Environ Health 2009 May 22;35(3):163-179 [FREE Full text] [CrossRef] [Medline]
  33. Salari N, Hosseinian-Far A, Jalali R, Vaisi-Raygani A, Rasoulpoor S, Mohammadi M, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. Global Health 2020 Jul 06;16(1):57 [FREE Full text] [CrossRef] [Medline]
  34. Bao Y, Sun Y, Meng S, Shi J, Lu L. 2019-nCoV epidemic: address mental health care to empower society. The Lancet 2020 Feb;395(10224):e37-e38. [CrossRef]
  35. Zhang C, Yang L, Liu S, Ma S, Wang Y, Cai Z, et al. Survey of Insomnia and Related Social Psychological Factors Among Medical Staff Involved in the 2019 Novel Coronavirus Disease Outbreak. Front Psychiatry 2020 Apr 14;11:306 [FREE Full text] [CrossRef] [Medline]
  36. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2012 Jan 10;463(1):121-137 [FREE Full text] [CrossRef] [Medline]
  37. Jackson CL, Redline S, Emmons KM. Sleep as a potential fundamental contributor to disparities in cardiovascular health. Annu Rev Public Health 2015 Mar 18;36(1):417-440 [FREE Full text] [CrossRef] [Medline]
  38. Van Cauter E, Holmback U, Knutson K, Leproult R, Miller A, Nedeltcheva A, et al. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Horm Res 2007 Feb 15;67 Suppl 1(Suppl. 1):2-9. [CrossRef] [Medline]
  39. Sanford L, Suchecki D, Meerlo P. Stress, arousal, and sleep. Curr Top Behav Neurosci 2015;25:379-410. [CrossRef] [Medline]
  40. Minkel J, Moreta M, Muto J, Htaik O, Jones C, Basner M, et al. Sleep deprivation potentiates HPA axis stress reactivity in healthy adults. Health Psychol 2014 Nov;33(11):1430-1434. [CrossRef] [Medline]
  41. Leproult R. Sleep loss results in an elevation of cortisol levels the next evening. Sleep 1997;20(10):865-870. [CrossRef]
  42. Redwine L. Effects of Sleep and Sleep Deprivation on Interleukin-6, Growth Hormone, Cortisol, and Melatonin Levels in Humans. Journal of Clinical Endocrinology & Metabolism 2000 Oct 01;85(10):3597-3603. [CrossRef]
  43. Greenhalgh T, Knight M, A'Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ 2020 Aug 11;370:m3026. [CrossRef] [Medline]

HR: heart rate
HRV: heart rate variability
NREM: nonrapid eye movement
PPG: photoplethysmography
REM: rapid eye movement
RR: respiratory rate
SpO2: oxygen saturation
WEAICOR: Wearables to Investigate the Long Term Cardiovascular and Behavioral Impacts of COVID-19

Edited by C Basch; submitted 15.03.22; peer-reviewed by A Joseph, M Tummalacherla, K Uludag; comments to author 14.04.22; revised version received 10.05.22; accepted 20.06.22; published 05.07.22


©Mario Mekhael, Chan Ho Lim, Abdel Hadi El Hajjar, Charbel Noujaim, Christopher Pottle, Noor Makan, Lilas Dagher, Yichi Zhang, Nour Chouman, Dan L Li, Tarek Ayoub, Nassir Marrouche. Originally published in the Journal of Medical Internet Research (, 05.07.2022.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on, as well as this copyright and license information must be included.