Published on in Vol 23, No 5 (2021): May
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/25079, first published
.
Journals
- Sadik O, Schaffer J, Land W, Xue H, Yazgan I, Kafesçiler K, Sungur M. A Bayesian Network Concept for Pain Assessment. JMIR Biomedical Engineering 2022;7(2):e35711 View
- Winslow B, Kwasinski R, Whirlow K, Mills E, Hullfish J, Carroll M. Automatic detection of pain using machine learning. Frontiers in Pain Research 2022;3 View
- Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. Frontiers in Network Physiology 2023;3 View
- Somani S, Yu K, Chiu A, Sykes K, Villwock J. Consumer Wearables for Patient Monitoring in Otolaryngology: A State of the Art Review. Otolaryngology–Head and Neck Surgery 2022;167(4):620 View
- Liang W, Fan Y. Deep Learning-Based ECG Abnormality Identification Prediction and Analysis. Journal of Sensors 2022;2022:1 View
- Fernandez Rojas R, Brown N, Waddington G, Goecke R. A systematic review of neurophysiological sensing for the assessment of acute pain. npj Digital Medicine 2023;6(1) View
- Alostad H, Dawiek S, Davulcu H. Q8VaxStance: Dataset Labeling System for Stance Detection towards Vaccines in Kuwaiti Dialect. Big Data and Cognitive Computing 2023;7(3):151 View
- Dudarev V, Barral O, Zhang C, Davis G, Enns J. On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild. Sensors 2023;23(13):5863 View
- Zhu W, Liu C, Yu H, Guo Y, Xiao Y, Lin Y. COMPASS App: A Patient-centered Physiological based Pain Assessment System. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2023;67(1):1361 View
- Lu Z, Ozek B, Kamarthi S. Transformer encoder with multiscale deep learning for pain classification using physiological signals. Frontiers in Physiology 2023;14 View
- Wang H, Wang Q, He Q, Li S, Zhao Y, Zuo Y. Current perioperative nociception monitoring and potential directions. Asian Journal of Surgery 2024;47(6):2558 View
- Albahdal D, Aljebreen W, Ibrahim D. PainMeter: Automatic Assessment of Pain Intensity Levels From Multiple Physiological Signals Using Machine Learning. IEEE Access 2024;12:48349 View
- Pais D, Brás S, Sebastião R. A Review on the Use of Physiological Signals for Assessing Postoperative Pain. ACM Computing Surveys 2025;57(1):1 View
- Subramanian A, Cao R, Naeni E, Aqajari S, Hughes T, Calderon M, Zheng K, Dutt N, Liljeberg P, Salanterä S, Nelson A, Rahmani A. Multimodal Pain Recognition in Postoperative Patients: A Machine Learning Approach (Preprint). JMIR Formative Research 2024 View