Published on in Vol 23, No 5 (2021): May

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/25079, first published .
Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study

Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study

Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study

Journals

  1. Sadik O, Schaffer J, Land W, Xue H, Yazgan I, Kafesçiler K, Sungur M. A Bayesian Network Concept for Pain Assessment. JMIR Biomedical Engineering 2022;7(2):e35711 View
  2. Winslow B, Kwasinski R, Whirlow K, Mills E, Hullfish J, Carroll M. Automatic detection of pain using machine learning. Frontiers in Pain Research 2022;3 View
  3. Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. Frontiers in Network Physiology 2023;3 View
  4. Somani S, Yu K, Chiu A, Sykes K, Villwock J. Consumer Wearables for Patient Monitoring in Otolaryngology: A State of the Art Review. Otolaryngology–Head and Neck Surgery 2022;167(4):620 View
  5. Liang W, Fan Y. Deep Learning-Based ECG Abnormality Identification Prediction and Analysis. Journal of Sensors 2022;2022:1 View
  6. Fernandez Rojas R, Brown N, Waddington G, Goecke R. A systematic review of neurophysiological sensing for the assessment of acute pain. npj Digital Medicine 2023;6(1) View
  7. Alostad H, Dawiek S, Davulcu H. Q8VaxStance: Dataset Labeling System for Stance Detection towards Vaccines in Kuwaiti Dialect. Big Data and Cognitive Computing 2023;7(3):151 View
  8. Dudarev V, Barral O, Zhang C, Davis G, Enns J. On the Reliability of Wearable Technology: A Tutorial on Measuring Heart Rate and Heart Rate Variability in the Wild. Sensors 2023;23(13):5863 View
  9. Zhu W, Liu C, Yu H, Guo Y, Xiao Y, Lin Y. COMPASS App: A Patient-centered Physiological based Pain Assessment System. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2023;67(1):1361 View
  10. Lu Z, Ozek B, Kamarthi S. Transformer encoder with multiscale deep learning for pain classification using physiological signals. Frontiers in Physiology 2023;14 View
  11. Wang H, Wang Q, He Q, Li S, Zhao Y, Zuo Y. Current perioperative nociception monitoring and potential directions. Asian Journal of Surgery 2024;47(6):2558 View
  12. Albahdal D, Aljebreen W, Ibrahim D. PainMeter: Automatic Assessment of Pain Intensity Levels From Multiple Physiological Signals Using Machine Learning. IEEE Access 2024;12:48349 View
  13. Pais D, Brás S, Sebastião R. A Review on the Use of Physiological Signals for Assessing Postoperative Pain. ACM Computing Surveys 2025;57(1):1 View
  14. Subramanian A, Cao R, Naeini E, Aqajari S, Hughes T, Calderon M, Zheng K, Dutt N, Liljeberg P, Salanterä S, Nelson A, Rahmani A. Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach. JMIR Formative Research 2025;9:e67969 View
  15. Xing W, Piao J, Ren T, Liang Y, Li Q, Gu Y, Wang R. Classification of kinesiophobia in patients after cardiac surgery under extracorporeal circulation in China: latent profile and influencing factors analysis from a cross-sectional study. BMJ Open 2025;15(1):e083909 View
  16. Flavin M, Foppiani J, Paul M, Alvarez A, Foster L, Gavlasova D, Ma H, Rogers J, Lin S. Bioelectronics for targeted pain management. Nature Reviews Electrical Engineering 2025;2(6):407 View
  17. Khan M, Chetty G, Goecke R, Fernandez-Rojas R. A Systematic Review of Multimodal Signal Fusion for Acute Pain Assessment Systems. ACM Computing Surveys 2026;58(2):1 View
  18. Semiz B, Hancioglu Ö, Şahin R. Pain assessment and determination methods with wearable sensors: a scoping review. Medical & Biological Engineering & Computing 2025 View
  19. Qiu R, Xie K, Xie S, Yang J, Xie Y, Qiu S, Bai W. Toward Efficient ECG-Based Pain Intensity Recognition: An End-to-End Neural Network Using Multiple Temporal Feature Compression and Fusion. IEEE Internet of Things Journal 2025;12(19):40764 View
  20. Forte A, Avila F, Borna S, Gomez-Cabello C, Pressman S, Haider S, Carter R, Giardi D, Bruce C, McLeod C. Autonomic Parameters Correlated to Acute Postoperative Pain in the Postanesthesia Care Unit: A Systematic Review. Pain Management Nursing 2025 View
  21. Gu Z, Zhou T, Liu C, Zhu J, Liao Y. Efficacy of Fu’s Subcutaneous Needling for chronic non-specific neck pain and its effect on muscle elasticity: a randomized controlled trial. Frontiers in Medicine 2025;12 View
  22. Gasmi K, Hrizi O, Aoun N, Alrashdi I, Alqazzaz A, Hamid O, Altaieb M, Abdalrahman A, Ammar L, Mrabet M, Necibi O. Enhanced Multimodal Physiological Signal Analysis for Pain Assessment Using Optimized Ensemble Deep Learning. Computer Modeling in Engineering & Sciences 2025;143(2):2459 View

Books/Policy Documents

  1. Bieńkowska M, Badura A, Myśliwiec A, Pietka E. Information Technology in Biomedicine. View
  2. Pais D, Sebastião R. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. View
  3. Ma Y, Wu X, Wang X, Li J, Qin P, Yin M, Cao W, Yi Z. Cognitive Computation and Systems. View

Conference Proceedings

  1. Fang R, Zhang R, Hosseini S, Faghih M, Rafatirad S, Rafatirad S, Homayoun H. 2022 4th International Conference on Intelligent Medicine and Image Processing. Pain Level Modeling of Intensive Care Unit patients with Machine Learning Methods: An Effective Congeneric Clustering-based Approach View
  2. Nakanishi T, Fujiwara K, Sobue K. 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). Prediction Model of Postoperative Pain Exacerbation Using a Wearable Electrocardiogram Sensor View
  3. Gupta A, Saikia T, Gupta P, Dhall A. Companion Proceedings of the 27th International Conference on Multimodal Interaction. PainXtract: A Multimodal System for Multiclass Pain Classification Using Physiological Signals View