Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 20.07.18 in Vol 20, No 7 (2018): July

This paper is in the following e-collection/theme issue:

Works citing "Predicting Mood Disturbance Severity with Mobile Phone Keystroke Metadata: A BiAffect Digital Phenotyping Study"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.9775):

(note that this is only a small subset of citations)

  1. Liu G, Henson P, Keshavan M, Pekka-Onnela J, Torous J. Assessing the potential of longitudinal smartphone based cognitive assessment in schizophrenia: A naturalistic pilot study. Schizophrenia Research: Cognition 2019;17:100144
    CrossRef
  2. Allen S. Artificial Intelligence and the Future of Psychiatry. IEEE Pulse 2020;11(3):2
    CrossRef
  3. Potier R. The Digital Phenotyping Project: A Psychoanalytical and Network Theory Perspective. Frontiers in Psychology 2020;11
    CrossRef
  4. Birnbaum ML, Ernala SK, Rizvi AF, Arenare E, R. Van Meter A, De Choudhury M, Kane JM. Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook. npj Schizophrenia 2019;5(1)
    CrossRef
  5. Seppälä J, De Vita I, Jämsä T, Miettunen J, Isohanni M, Rubinstein K, Feldman Y, Grasa E, Corripio I, Berdun J, D'Amico E, Bulgheroni M. Mobile Phone and Wearable Sensor-Based mHealth Approaches for Psychiatric Disorders and Symptoms: Systematic Review. JMIR Mental Health 2019;6(2):e9819
    CrossRef
  6. Daus H, Bloecher T, Egeler R, De Klerk R, Stork W, Backenstrass M. Development of an Emotion-Sensitive mHealth Approach for Mood-State Recognition in Bipolar Disorder. JMIR Mental Health 2020;7(7):e14267
    CrossRef
  7. Jacobson NC, Chung YJ. Passive Sensing of Prediction of Moment-To-Moment Depressed Mood among Undergraduates with Clinical Levels of Depression Sample Using Smartphones. Sensors 2020;20(12):3572
    CrossRef
  8. Mastoras R, Iakovakis D, Hadjidimitriou S, Charisis V, Kassie S, Alsaadi T, Khandoker A, Hadjileontiadis LJ. Touchscreen typing pattern analysis for remote detection of the depressive tendency. Scientific Reports 2019;9(1)
    CrossRef
  9. Stange JP, Kleiman EM, Mermelstein RJ, Trull TJ. Using ambulatory assessment to measure dynamic risk processes in affective disorders. Journal of Affective Disorders 2019;259:325
    CrossRef
  10. Rashidisabet H, Thomas PJ, Ajilore O, Zulueta J, Moore RC, Leow A. A systems biology approach to the digital behaviorome. Current Opinion in Systems Biology 2020;20:8
    CrossRef
  11. Radhakrishnan K, Kim MT, Burgermaster M, Brown RA, Xie B, Bray MS, Fournier CA. The potential of digital phenotyping to advance the contributions of mobile health to self-management science. Nursing Outlook 2020;
    CrossRef
  12. Campbell L, Tang B, Watson W, Higgins M, Cherner M, Henry B, Moore R. Cannabis Use is Associated with Greater Total Sleep Time in Middle-Aged and Older Adults with and without HIV: A Preliminary Report Utilizing Digital Health Technologies. Cannabis 2020;3(2):180
    CrossRef
  13. Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Translational Psychiatry 2020;10(1)
    CrossRef
  14. Victory A, Letkiewicz A, Cochran AL. Digital solutions for shaping mood and behavior among individuals with mood disorders. Current Opinion in Systems Biology 2020;21:25
    CrossRef
  15. Piau A, Wild K, Mattek N, Kaye J. Current State of Digital Biomarker Technologies for Real-Life, Home-Based Monitoring of Cognitive Function for Mild Cognitive Impairment to Mild Alzheimer Disease and Implications for Clinical Care: Systematic Review. Journal of Medical Internet Research 2019;21(8):e12785
    CrossRef
  16. Brietzke E, Hawken ER, Idzikowski M, Pong J, Kennedy SH, Soares CN. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neuroscience & Biobehavioral Reviews 2019;104:223
    CrossRef
  17. Zulueta J, Leow AD, Ajilore O. Real-Time Monitoring: A Key Element in Personalized Health and Precision Health. FOCUS 2020;18(2):175
    CrossRef
  18. Bidmon S, Elshiewy O, Terlutter R, Boztug Y. What Patients Value in Physicians: Analyzing Drivers of Patient Satisfaction Using Physician-Rating Website Data. Journal of Medical Internet Research 2020;22(2):e13830
    CrossRef
  19. Purswani JM, Dicker AP, Champ CE, Cantor M, Ohri N. Big Data From Small Devices: The Future of Smartphones in Oncology. Seminars in Radiation Oncology 2019;29(4):338
    CrossRef
  20. Rudd BN, Beidas RS. Digital Mental Health: The Answer to the Global Mental Health Crisis?. JMIR Mental Health 2020;7(6):e18472
    CrossRef
  21. Severus E, Ebner-Priemer U, Beier F, Mühlbauer E, Ritter P, Hill H, Bauer M. Ambulantes Monitoring und digitale Phänotypisierung in Diagnostik und Therapie bipolarer Erkrankungen. Der Nervenarzt 2019;90(12):1215
    CrossRef
  22. Vesel C, Rashidisabet H, Zulueta J, Stange JP, Duffecy J, Hussain F, Piscitello A, Bark J, Langenecker SA, Young S, Mounts E, Omberg L, Nelson PC, Moore RC, Koziol D, Bourne K, Bennett CC, Ajilore O, Demos AP, Leow A. Effects of mood and aging on keystroke dynamics metadata and their diurnal patterns in a large open-science sample: A BiAffect iOS study. Journal of the American Medical Informatics Association 2020;27(7):1007
    CrossRef
  23. Diamantaris M, Marcantoni F, Ioannidis S, Polakis J. The Seven Deadly Sins of the HTML5 WebAPI. ACM Transactions on Privacy and Security 2020;23(4):1
    CrossRef
  24. Birnbaum ML, Kulkarni P, Van Meter A, Chen V, Rizvi AF, Arenare E, De Choudhury M, Kane JM. Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study. JMIR Mental Health 2020;7(9):e19348
    CrossRef
  25. Asensio-Cuesta S, Sánchez-García , Conejero JA, Saez C, Rivero-Rodriguez A, García-Gómez JM. Smartphone Sensors for Monitoring Cancer-Related Quality of Life: App Design, EORTC QLQ-C30 Mapping and Feasibility Study in Healthy Subjects. International Journal of Environmental Research and Public Health 2019;16(3):461
    CrossRef
  26. van der Watt ASJ, Odendaal W, Louw K, Seedat S. Distant mood monitoring for depressive and bipolar disorders: a systematic review. BMC Psychiatry 2020;20(1)
    CrossRef
  27. Antosik-Wójcińska AZ, Dominiak M, Chojnacka M, Kaczmarek-Majer K, Opara KR, Radziszewska W, Olwert A, Święcicki . Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling. International Journal of Medical Informatics 2020;138:104131
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.9775):

  1. Hussain F, Stange JP, Langenecker SA, McInnis MG, Zulueta J, Piscitello A, Cao B, Huang H, Yu PS, Nelson P, Ajilore OA, Leow A. Digital Phenotyping and Mobile Sensing. 2019. Chapter 10:161
    CrossRef