Published on in Vol 20, No 12 (2018): December

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/11817, first published .
Exploring the Utility of Community-Generated Social Media Content for Detecting Depression: An Analytical Study on Instagram

Exploring the Utility of Community-Generated Social Media Content for Detecting Depression: An Analytical Study on Instagram

Exploring the Utility of Community-Generated Social Media Content for Detecting Depression: An Analytical Study on Instagram

Journals

  1. Chancellor S, De Choudhury M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digital Medicine 2020;3(1) View
  2. Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance 2019;5(2):e13439 View
  3. Rousidis D, Koukaras P, Tjortjis C. Social media prediction: a literature review. Multimedia Tools and Applications 2020;79(9-10):6279 View
  4. Hayes A, Andrews L. A complex systems approach to the study of change in psychotherapy. BMC Medicine 2020;18(1) View
  5. Mavragani A. Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206 View
  6. Graham S, Depp C, Lee E, Nebeker C, Tu X, Kim H, Jeste D. Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Current Psychiatry Reports 2019;21(11) View
  7. Ávila-Tomás J, Mayer-Pujadas M, Quesada-Varela V. La inteligencia artificial y sus aplicaciones en medicina II: importancia actual y aplicaciones prácticas. Atención Primaria 2021;53(1):81 View
  8. Zunic A, Corcoran P, Spasic I. Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Medical Informatics 2020;8(1):e16023 View
  9. Marsch L, Campbell A, Campbell C, Chen C, Ertin E, Ghitza U, Lambert-Harris C, Hassanpour S, Holtyn A, Hser Y, Jacobs P, Klausner J, Lemley S, Kotz D, Meier A, McLeman B, McNeely J, Mishra V, Mooney L, Nunes E, Stafylis C, Stanger C, Saunders E, Subramaniam G, Young S. The application of digital health to the assessment and treatment of substance use disorders: The past, current, and future role of the National Drug Abuse Treatment Clinical Trials Network. Journal of Substance Abuse Treatment 2020;112:4 View
  10. Gupta R, Ariefdjohan M. Mental illness on Instagram: a mixed method study to characterize public content, sentiments, and trends of antidepressant use. Journal of Mental Health 2021;30(4):518 View
  11. Marsch L. Digital health data-driven approaches to understand human behavior. Neuropsychopharmacology 2021;46(1):191 View
  12. Wang X, Chen S, Li T, Li W, Zhou Y, Zheng J, Chen Q, Yan J, Tang B. Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis. JMIR Medical Informatics 2020;8(7):e17958 View
  13. Kim J, Uddin Z, Lee Y, Nasri F, Gill H, Subramanieapillai M, Lee R, Udovica A, Phan L, Lui L, Iacobucci M, Mansur R, Rosenblat J, McIntyre R. A Systematic review of the validity of screening depression through Facebook, Twitter, Instagram, and Snapchat. Journal of Affective Disorders 2021;286:360 View
  14. Stirling E, Willcox J, Ong K, Forsyth A. Social media analytics in nutrition research: a rapid review of current usage in investigation of dietary behaviours. Public Health Nutrition 2021;24(6):1193 View
  15. Gooding P, Kariotis T. Ethics and Law in Research on Algorithmic and Data-Driven Technology in Mental Health Care: Scoping Review. JMIR Mental Health 2021;8(6):e24668 View
  16. Xu Q, Chang V, Jayne C. A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal 2022;3:100073 View
  17. He L, Yin T, Zheng K. They May Not Work! An evaluation of eleven sentiment analysis tools on seven social media datasets. Journal of Biomedical Informatics 2022;132:104142 View
  18. Fukazawa Y. Estimating Mental Health Using Human-generated Big Data and Machine Learning. The Brain & Neural Networks 2022;29(2):78 View
  19. FOWLER J, MADAN A, BRUCE C, FRUEH B, KASH B, JONES S, SASANGOHAR F. Improving Psychiatric Care Through Integrated Digital Technologies. Journal of Psychiatric Practice 2021;27(2):92 View
  20. Sepas A, El-Hussuna A, Atici S, Yang W. The Association Between Problematic Instagram Use, Psychological Distress, and Wellbeing: A Systematic Review and Meta-Analysis. SSRN Electronic Journal 2021 View
  21. Koutsouleris N, Hauser T, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. The Lancet Digital Health 2022;4(11):e829 View
  22. Pan W, Wang X, Zhou W, Hang B, Guo L. Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches. International Journal of Environmental Research and Public Health 2023;20(3):2688 View
  23. Bhadra S, Kumar C. An insight into diagnosis of depression using machine learning techniques: a systematic review. Current Medical Research and Opinion 2022;38(5):749 View
  24. Arias F, Zambrano Nunez M, Guerra-Adames A, Tejedor-Flores N, Vargas-Lombardo M. Sentiment Analysis of Public Social Media as a Tool for Health-Related Topics. IEEE Access 2022;10:74850 View
  25. Szeto M, Barber C, Ranpariya V, Anderson J, Hatch J, Ward J, Aguilera M, Hassan S, Hamp A, Coolman T, Dellavalle R. Emojis and Emoticons in Health Care and Dermatology Communication: Narrative Review. JMIR Dermatology 2022;5(3):e33851 View
  26. Zhang T, Schoene A, Ji S, Ananiadou S. Natural language processing applied to mental illness detection: a narrative review. npj Digital Medicine 2022;5(1) View
  27. Zhang T, Yang K, Ji S, Ananiadou S. Emotion fusion for mental illness detection from social media: A survey. Information Fusion 2023;92:231 View
  28. Castilla-Puentes R, Dagar A, Villanueva D, Jimenez-Parrado L, Valleta L, Falcone T. Digital conversations about depression among Hispanics and non-Hispanics in the US: a big‐data, machine learning analysis identifies specific characteristics of depression narratives in Hispanics. Annals of General Psychiatry 2021;20(1) View
  29. Sufi F, Alsulami M. Automated Multidimensional Analysis of Global Events With Entity Detection, Sentiment Analysis and Anomaly Detection. IEEE Access 2021;9:152449 View
  30. Salas-Zárate R, Alor-Hernández G, Salas-Zárate M, Paredes-Valverde M, Bustos-López M, Sánchez-Cervantes J. Detecting Depression Signs on Social Media: A Systematic Literature Review. Healthcare 2022;10(2):291 View
  31. Sufi F, Alsulami M, Gutub A. Automating Global Threat-Maps Generation via Advancements of News Sensors and AI. Arabian Journal for Science and Engineering 2023;48(2):2455 View
  32. Cai Y, Wang H, Ye H, Jin Y, Gao W. Depression detection on online social network with multivariate time series feature of user depressive symptoms. Expert Systems with Applications 2023;217:119538 View
  33. Zhai S, Li Y, Chi M. The Impact of Government Social Media Information Quality on Public Panic During the Infodemic. Frontiers in Psychology 2022;13 View
  34. Dhelim S, Chen L, Das S, Ning H, Nugent C, Leavey G, Pesch D, Bantry-White E, Burns D. Detecting Mental Distresses Using Social Behavior Analysis in the Context of COVID-19: A Survey. ACM Computing Surveys 2023;55(14s):1 View
  35. Obagbuwa I, Danster S, Chibaya O. Supervised machine learning models for depression sentiment analysis. Frontiers in Artificial Intelligence 2023;6 View
  36. Campbell C, Chen C, Adams S, Asyyed A, Athale N, Does M, Hassanpour S, Hichborn E, Jackson-Morris M, Jacobson N, Jones H, Kotz D, Lambert-Harris C, Li Z, McLeman B, Mishra V, Stanger C, Subramaniam G, Wu W, Zegers C, Marsch L. Patient Engagement in a Multimodal Digital Phenotyping Study of Opioid Use Disorder. Journal of Medical Internet Research 2023;25:e45556 View
  37. Lin T, Luo Y. Emoji and visual complexity in health information design: A moderated serial mediation model. Telematics and Informatics 2023;85:102065 View
  38. Mao K, Wu Y, Chen J. A systematic review on automated clinical depression diagnosis. npj Mental Health Research 2023;2(1) View
  39. Aldkheel A, Zhou L. Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities. Journal of Healthcare Informatics Research 2024;8(1):88 View
  40. Khoo L, Lim M, Chong C, McNaney R. Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches. Sensors 2024;24(2):348 View
  41. de Hond A, van Buchem M, Fanconi C, Roy M, Blayney D, Kant I, Steyerberg E, Hernandez-Boussard T. Predicting Depression Risk in Patients With Cancer Using Multimodal Data: Algorithm Development Study. JMIR Medical Informatics 2024;12:e51925 View
  42. Tlachac M, Heinz M, Reisch M, Ogden S. Symptom Detection with Text Message Log Distributions for Holistic Depression and Anxiety Screening. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2024;8(1):1 View
  43. Bayram H, Öztürkcan A. Türkiye’de Popüler Diyet Terimlerine Gösterilen İlginin İncelenmesi: Bir İnfodemiyoloji Çalışması. Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi 2024;6(1):120 View
  44. Khan A, Ali R. Unraveling minds in the digital era: a review on mapping mental health disorders through machine learning techniques using online social media. Social Network Analysis and Mining 2024;14(1) View
  45. Park Y, Park S, Lee M. Effectiveness of artificial intelligence in detecting and managing depressive disorders: Systematic review. Journal of Affective Disorders 2024;361:445 View
  46. Salas-Zárate R, Alor-Hernández G, Paredes-Valverde M, Salas-Zárate M, Bustos-López M, Sánchez-Cervantes J. Mental-Health: An NLP-Based System for Detecting Depression Levels through User Comments on Twitter (X). Mathematics 2024;12(13):1926 View
  47. Paradise Vit A, Magid A. Differences in Fear and Negativity Levels Between Formal and Informal Health-Related Websites: Analysis of Sentiments and Emotions. Journal of Medical Internet Research 2024;26:e55151 View
  48. Tlachac M, Heinz M. Mental Health and Mobile Communication Profiles of Crowdsourced Participants. IEEE Journal of Biomedical and Health Informatics 2024;28(12):7683 View
  49. Chandrasekaran R, Kotaki S, Nagaraja A. Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study. npj Mental Health Research 2024;3(1) View

Books/Policy Documents

  1. Nor N, Rahman N, Yaakub M, Zukarnain Z. Intelligent Computing. View
  2. Heinz M, Thomas N, Nguyen N, Griffin T, Jacobson N. Comprehensive Clinical Psychology. View
  3. Biswas S, Hasija Y. Predictive Analytics of Psychological Disorders in Healthcare. View
  4. Nag A, Das A, Sil R, Kar A, Mandal D, Das B. Intelligent Systems Design and Applications. View
  5. Chatterjee M, Modak S, Sarkar D. Cognitive Cardiac Rehabilitation Using IoT and AI Tools. View
  6. Mesquita F, Maurício J, Marques G. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. View