Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 29.06.17 in Vol 19, No 6 (2017): June

This paper is in the following e-collection/theme issue:

Works citing "Researching Mental Health Disorders in the Era of Social Media: Systematic Review"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.7215):

(note that this is only a small subset of citations)

  1. Crocamo C, Viviani M, Bartoli F, Carrà G, Pasi G. Detecting Binge Drinking and Alcohol-Related Risky Behaviours from Twitter’s Users: An Exploratory Content- and Topology-Based Analysis. International Journal of Environmental Research and Public Health 2020;17(5):1510
    CrossRef
  2. Malaeb D, Salameh P, Barbar S, Awad E, Haddad C, Hallit R, Sacre H, Akel M, Obeid S, Hallit S. Problematic social media use and mental health (depression, anxiety, and insomnia) among Lebanese adults: Any mediating effect of stress?. Perspectives in Psychiatric Care 2020;
    CrossRef
  3. Tran BX, McIntyre RS, Latkin CA, Phan HT, Vu GT, Nguyen HLT, Gwee KK, Ho CSH, Ho RCM. The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis. International Journal of Environmental Research and Public Health 2019;16(12):2150
    CrossRef
  4. Ford E, Curlewis K, Wongkoblap A, Curcin V. Public Opinions on Using Social Media Content to Identify Users With Depression and Target Mental Health Care Advertising: Mixed Methods Survey. JMIR Mental Health 2019;6(11):e12942
    CrossRef
  5. Kamiński , Łoniewski , Misera , Marlicz . Heartburn-Related Internet Searches and Trends of Interest across Six Western Countries: A Four-Year Retrospective Analysis Using Google Ads Keyword Planner. International Journal of Environmental Research and Public Health 2019;16(23):4591
    CrossRef
  6. Zhou T, Hu G, Wang L. Psychological Disorder Identifying Method Based on Emotion Perception over Social Networks. International Journal of Environmental Research and Public Health 2019;16(6):953
    CrossRef
  7. Notredame C, Morgiève M, Morel F, Berrouiguet S, Azé J, Vaiva G. Distress, Suicidality, and Affective Disorders at the Time of Social Networks. Current Psychiatry Reports 2019;21(10)
    CrossRef
  8. Choo H, Kim M, Choi J, Shin J, Shin S. Influenza screening via deep learning using a combination of epidemiological and patient-generated health data (Preprint). Journal of Medical Internet Research 2020;
    CrossRef
  9. Harb JG, Ebeling R, Becker K. A framework to analyze the emotional reactions to mass violent events on Twitter and influential factors. Information Processing & Management 2020;:102372
    CrossRef
  10. Chancellor S, De Choudhury M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digital Medicine 2020;3(1)
    CrossRef
  11. , , , , . Infodemiology and Infoveillance: Scoping Review. Journal of Medical Internet Research 2020;22(4):e16206
    CrossRef
  12. Cacheda F, Fernandez D, Novoa FJ, Carneiro V. Early Detection of Depression: Social Network Analysis and Random Forest Techniques. Journal of Medical Internet Research 2019;21(6):e12554
    CrossRef
  13. Zhao Y, Guo Y, He X, Wu Y, Yang X, Prosperi M, Jin Y, Bian J. Assessing mental health signals among sexual and gender minorities using Twitter data. Health Informatics Journal 2020;26(2):765
    CrossRef
  14. COLDER CARRAS M, MOJTABAI R, CULLEN B. Beyond Social Media. Journal of Psychiatric Practice 2018;24(2):127
    CrossRef
  15. Alonso SG, de la Torre-Díez I, Hamrioui S, López-Coronado M, Barreno DC, Nozaleda LM, Franco M. Data Mining Algorithms and Techniques in Mental Health: A Systematic Review. Journal of Medical Systems 2018;42(9)
    CrossRef
  16. Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review. Health Information & Libraries Journal 2018;35(2):91
    CrossRef
  17. Chancellor S, Baumer EPS, De Choudhury M. Who is the "Human" in Human-Centered Machine Learning. Proceedings of the ACM on Human-Computer Interaction 2019;3(CSCW):1
    CrossRef
  18. Moura I, Teles A, Silva F, Viana D, Coutinho L, Barros F, Endler M. Mental health ubiquitous monitoring supported by social situation awareness: A systematic review. Journal of Biomedical Informatics 2020;107:103454
    CrossRef
  19. Wang L, Liu H, Zhou T. A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media. Applied Sciences 2020;10(5):1647
    CrossRef
  20. Leis A, Ronzano F, Mayer MA, Furlong LI, Sanz F. Detecting Signs of Depression in Tweets in Spanish: Behavioral and Linguistic Analysis. Journal of Medical Internet Research 2019;21(6):e14199
    CrossRef
  21. Zhu B, Zheng X, Liu H, Li J, Wang P. Analysis of spatiotemporal characteristics of big data on social media sentiment with COVID-19 epidemic topics. Chaos, Solitons & Fractals 2020;140:110123
    CrossRef
  22. Su C, Xu Z, Pathak J, Wang F. Deep learning in mental health outcome research: a scoping review. Translational Psychiatry 2020;10(1)
    CrossRef
  23. Ahmad AR, Murad HR. The Impact of Social Media on Panic During the COVID-19 Pandemic in Iraqi Kurdistan: Online Questionnaire Study. Journal of Medical Internet Research 2020;22(5):e19556
    CrossRef
  24. Schmidt SJ, Kaess M. Fortschritte und Herausforderungen für die Analyse von Big Data in sozialen Medien im Jugendalter. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 2020;48(1):47
    CrossRef
  25. Kumar A, Sharma A, Arora A. Anxious Depression Prediction in Real-time Social Data. SSRN Electronic Journal 2019;
    CrossRef
  26. Wang X, Chen S, Li T, Li W, Zhou Y, Zheng J, Chen Q, Yan J, Tang B. Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis. JMIR Medical Informatics 2020;8(7):e17958
    CrossRef
  27. Huang T, Elghafari A, Relia K, Chunara R. High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data. Proceedings of the ACM on Human-Computer Interaction 2017;1(CSCW):1
    CrossRef
  28. Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health and Surveillance 2019;5(2):e13439
    CrossRef
  29. Zhang Y, Zhang OR, Li R, Flores A, Selek S, Zhang XY, Xu H. Psychiatric stressor recognition from clinical notes to reveal association with suicide. Health Informatics Journal 2019;25(4):1846
    CrossRef
  30. Yoo DW, Birnbaum ML, Van Meter AR, Ali AF, Arenare E, Abowd GD, De Choudhury M. Designing a Clinician-Facing Tool for Using Insights From Patients’ Social Media Activity: Iterative Co-Design Approach. JMIR Mental Health 2020;7(8):e16969
    CrossRef
  31. Fernández-Sotos P, Fernández-Caballero A, González P, Aparicio AI, Martínez-Gras I, Torio I, Dompablo M, García-Fernández L, Santos JL, Rodriguez-Jimenez R. Digital Technology for Internet Access by Patients With Early-Stage Schizophrenia in Spain: Multicenter Research Study. Journal of Medical Internet Research 2019;21(4):e11824
    CrossRef
  32. Du J, Zhang Y, Luo J, Jia Y, Wei Q, Tao C, Xu H. Extracting psychiatric stressors for suicide from social media using deep learning. BMC Medical Informatics and Decision Making 2018;18(S2)
    CrossRef
  33. Moessner M, Feldhege J, Wolf M, Bauer S. Analyzing big data in social media: Text and network analyses of an eating disorder forum. International Journal of Eating Disorders 2018;51(7):656
    CrossRef
  34. Naslund JA, Gonsalves PP, Gruebner O, Pendse SR, Smith SL, Sharma A, Raviola G. Digital Innovations for Global Mental Health: Opportunities for Data Science, Task Sharing, and Early Intervention. Current Treatment Options in Psychiatry 2019;6(4):337
    CrossRef
  35. Walsh CG, Chaudhry B, Dua P, Goodman KW, Kaplan B, Kavuluru R, Solomonides A, Subbian V. Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence. JAMIA Open 2020;3(1):9
    CrossRef
  36. Mavragani A, Ochoa G, Tsagarakis KP. Assessing the Methods, Tools, and Statistical Approaches in Google Trends Research: Systematic Review. Journal of Medical Internet Research 2018;20(11):e270
    CrossRef
  37. , , , , . Research Directions for Clinical Care and Technology: the JTIBS Research Column. Journal of Technology in Behavioral Science 2020;
    CrossRef
  38. Mavragani A, Ochoa G. Infoveillance of infectious diseases in USA: STDs, tuberculosis, and hepatitis. Journal of Big Data 2018;5(1)
    CrossRef
  39. Coşkun M, Ozturan M. #europehappinessmap: A Framework for Multi-Lingual Sentiment Analysis via Social Media Big Data (A Twitter Case Study). Information 2018;9(5):102
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.7215):

  1. de Araújo Novaes M, Basu A. Fundamentals of Telemedicine and Telehealth. 2020. :305
    CrossRef
  2. Baba T, Baba K, Ikeda D. Advanced Information Networking and Applications. 2020. Chapter 23:265
    CrossRef
  3. Teles A, Barros F, Rodrigues I, Barbosa A, Silva F, Coutinho L, Teixeira S. IoT and ICT for Healthcare Applications. 2020. Chapter 4:33
    CrossRef
  4. . Fundamentals of Telemedicine and Telehealth. 2020. :347
    CrossRef
  5. Valdez R, Keim-Malpass J. Social Web and Health Research. 2019. Chapter 13:259
    CrossRef
  6. Ebert DD, Harrer M, Apolinário-Hagen J, Baumeister H. Frontiers in Psychiatry. 2019. Chapter 29:583
    CrossRef