Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 23.02.15 in Vol 17, No 2 (2015): February

This paper is in the following e-collection/theme issue:

Works citing "Twitter Sentiment Predicts Affordable Care Act Marketplace Enrollment"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.3812):

(note that this is only a small subset of citations)

  1. Hao J, Dai H. Payday Loan Marketing in Social Media Networks. Journal of Consumer Affairs 2018;52(2):441
    CrossRef
  2. Xu Z, Guo H. Using Text Mining to Compare Online Pro- and Anti-Vaccine Headlines: Word Usage, Sentiments, and Online Popularity. Communication Studies 2018;69(1):103
    CrossRef
  3. Mostafa MM, Nebot NR. Sentiment analysis of Arabic language influence on Spanish vocabulary: An El País newspaper and Twitter case study. Journal of Information Technology Case and Application Research 2017;19(3):145
    CrossRef
  4. Ji R, Chen F, Cao L, Gao Y. Cross-Modality Microblog Sentiment Prediction via Bi-Layer Multimodal Hypergraph Learning. IEEE Transactions on Multimedia 2019;21(4):1062
    CrossRef
  5. Hawkins JB, Brownstein JS, Tuli G, Runels T, Broecker K, Nsoesie EO, McIver DJ, Rozenblum R, Wright A, Bourgeois FT, Greaves F. Measuring patient-perceived quality of care in US hospitals using Twitter. BMJ Quality & Safety 2016;25(6):404
    CrossRef
  6. Dai H, Lee BR, Hao J. Predicting Asthma Prevalence by Linking Social Media Data and Traditional Surveys. The ANNALS of the American Academy of Political and Social Science 2017;669(1):75
    CrossRef
  7. Sinnenberg L, Buttenheim AM, Padrez K, Mancheno C, Ungar L, Merchant RM. Twitter as a Tool for Health Research: A Systematic Review. American Journal of Public Health 2017;107(1):e1
    CrossRef
  8. Xu Z. How emergency managers engage Twitter users during disasters. Online Information Review 2020;44(4):933
    CrossRef
  9. Crannell WC, Clark E, Jones C, James TA, Moore J. A pattern-matched Twitter analysis of US cancer-patient sentiments. Journal of Surgical Research 2016;206(2):536
    CrossRef
  10. Han L, Han L, Darney B, Rodriguez MI. Tweeting PP: an analysis of the 2015–2016 Planned Parenthood controversy on Twitter. Contraception 2017;96(6):388
    CrossRef
  11. Hao J, Dai H. Social media content and sentiment analysis on consumer security breaches. Journal of Financial Crime 2016;23(4):855
    CrossRef
  12. van den Broek-Altenburg EM, Atherly AJ. Using Social Media to Identify Consumers’ Sentiments towards Attributes of Health Insurance during Enrollment Season. Applied Sciences 2019;9(10):2035
    CrossRef
  13. Gollust SE, Qin X, Wilcock AD, Baum LM, Barry CL, Niederdeppe J, Fowler EF, Karaca-Mandic P. Search and You Shall Find: Geographic Characteristics Associated With Google Searches During the Affordable Care Act’s First Enrollment Period. Medical Care Research and Review 2017;74(6):723
    CrossRef
  14. Pai RR, Alathur S. Assessing mobile health applications with twitter analytics. International Journal of Medical Informatics 2018;113:72
    CrossRef
  15. Merchant RM, Asch DA, Crutchley P, Ungar LH, Guntuku SC, Eichstaedt JC, Hill S, Padrez K, Smith RJ, Schwartz HA, Ramagopalan SV. Evaluating the predictability of medical conditions from social media posts. PLOS ONE 2019;14(6):e0215476
    CrossRef
  16. Seltzer E, Jean N, Kramer-Golinkoff E, Asch D, Merchant R. The content of social media's shared images about Ebola: a retrospective study. Public Health 2015;129(9):1273
    CrossRef
  17. Chen F, Ji R, Su J, Cao D, Gao Y. Predicting Microblog Sentiments via Weakly Supervised Multimodal Deep Learning. IEEE Transactions on Multimedia 2018;20(4):997
    CrossRef
  18. Graves RL, Tufts C, Meisel ZF, Polsky D, Ungar L, Merchant RM. Opioid Discussion in the Twittersphere. Substance Use & Misuse 2018;53(13):2132
    CrossRef
  19. Mostafa MM, Nebot NR. The Arab Image in Spanish Social Media: A Twitter Sentiment Analytics Approach. Journal of Intercultural Communication Research 2020;49(2):133
    CrossRef
  20. Davis MA, Zheng K, Liu Y, Levy H. Public Response to Obamacare on Twitter. Journal of Medical Internet Research 2017;19(5):e167
    CrossRef
  21. Anwar M, Khoury D, Aldridge AP, Parker SJ, Conway KP. Using Twitter to Surveil the Opioid Epidemic in North Carolina: An Exploratory Study. JMIR Public Health and Surveillance 2020;6(2):e17574
    CrossRef
  22. Alzahrani A, Alghamdi A, Alqarni T, Alshareef R, Alzahrani A. Prevalence and predictors of depression, anxiety, and stress symptoms among patients with type II diabetes attending primary healthcare centers in the western region of Saudi Arabia: a cross-sectional study. International Journal of Mental Health Systems 2019;13(1)
    CrossRef
  23. Mostafa MM. Mining and mapping halal food consumers: A geo-located Twitter opinion polarity analysis. Journal of Food Products Marketing 2018;24(7):858
    CrossRef
  24. Yeung D. Social Media as a Catalyst for Policy Action and Social Change for Health and Well-Being: Viewpoint. Journal of Medical Internet Research 2018;20(3):e94
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.3812):

  1. Dony CC, Fekete E. Geospatial Technologies for Urban Health. 2020. Chapter 9:157
    CrossRef