Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Monday, March 11, 2019 at 4:00 PM to 4:30 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 29.08.13 in Vol 15, No 8 (2013): August

This paper is in the following e-collection/theme issue:

Works citing "Using Twitter to Examine Smoking Behavior and Perceptions of Emerging Tobacco Products"

According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.2534):

(note that this is only a small subset of citations)

  1. Hart KL, Perlis RH, McCoy TH. What do patients learn about psychotropic medications on the web? A natural language processing study. Journal of Affective Disorders 2020;260:366
    CrossRef
  2. Nguyen J, Gilbert L, Priede L, Heckman C. The Reach of the “Don’t Fry Day” Twitter Campaign: Content Analysis. JMIR Dermatology 2019;2(1):e14137
    CrossRef
  3. Kelley DE, Brown M, Murray A, Blake KD. Prevalence and Characteristics of Twitter Posts About Court-Ordered, Tobacco-Related Corrective Statements: Descriptive Content Analysis. JMIR Public Health and Surveillance 2019;5(4):e12878
    CrossRef
  4. Kwon M, Park E. Perception and Sentiments about Electronic Cigarette on the Social Media: A Systematic Review (Preprint). JMIR Public Health and Surveillance 2019;
    CrossRef
  5. Sabus C, Johns B, Schultz N, Gagnon K. Exploration of Content and Reach of Physical Therapy-Related Discussion on Twitter. Physical Therapy 2019;99(8):1048
    CrossRef
  6. Colditz JB, Welling J, Smith NA, James AE, Primack BA. World Vaping Day: Contextualizing Vaping Culture in Online Social Media Using a Mixed Methods Approach. Journal of Mixed Methods Research 2019;13(2):196
    CrossRef
  7. Ashford RD, Curtis BL. Commentary on Cohn and Colleagues: Discussions of Alcohol Use in an Online Social Network for Smoking Cessation: Analysis of Topics, Sentiment, and Social Network Centrality (ACER , 2019). Alcoholism: Clinical and Experimental Research 2019;43(3):401
    CrossRef
  8. Chu K, Colditz J, Malik M, Yates T, Primack B. Identifying Key Target Audiences for Public Health Campaigns: Leveraging Machine Learning in the Case of Hookah Tobacco Smoking. Journal of Medical Internet Research 2019;21(7):e12443
    CrossRef
  9. Little RJA, West BT, Boonstra PS, Hu J. Measures of the Degree of Departure from Ignorable Sample Selection. Journal of Survey Statistics and Methodology 2019;
    CrossRef
  10. Gibson LA, Siegel L, Kranzler E, Volinsky A, O’Donnell MB, Williams S, Yang Q, Kim Y, Binns S, Tran H, Maidel Epstein V, Leffel T, Jeong M, Liu J, Lee S, Emery S, Hornik RC. Combining Crowd-Sourcing and Automated Content Methods to Improve Estimates of Overall Media Coverage: Theme Mentions in E-cigarette and Other Tobacco Coverage. Journal of Health Communication 2019;:1
    CrossRef
  11. dos Santos BS, Steiner MTA, Fenerich AT, Lima RHP. Data mining and machine learning techniques applied to public health problems: A bibliometric analysis from 2009 to 2018. Computers & Industrial Engineering 2019;138:106120
    CrossRef
  12. Gurajala S, Dhaniyala S, Matthews JN. Understanding Public Response to Air Quality Using Tweet Analysis. Social Media + Society 2019;5(3):205630511986765
    CrossRef
  13. Doan S, Yang EW, Tilak SS, Li PW, Zisook DS, Torii M. Extracting health-related causality from twitter messages using natural language processing. BMC Medical Informatics and Decision Making 2019;19(S3)
    CrossRef
  14. Haynes E, Garside R, Green J, Kelly MP, Thomas J, Guell C. Semiautomated text analytics for qualitative data synthesis. Research Synthesis Methods 2019;10(3):452
    CrossRef
  15. Hu H, Phan N, Chun SA, Geller J, Vo H, Ye X, Jin R, Ding K, Kenne D, Dou D. An insight analysis and detection of drug-abuse risk behavior on Twitter with self-taught deep learning. Computational Social Networks 2019;6(1)
    CrossRef
  16. Foufi V, Timakum T, Gaudet-Blavignac C, Lovis C, Song M. Mining of Textual Health Information from Reddit: Analysis of Chronic Diseases With Extracted Entities and Their Relations. Journal of Medical Internet Research 2019;21(6):e12876
    CrossRef
  17. Escobedo P, Cruz TB, Tsai K, Allem J, Soto DW, Kirkpatrick MG, Pattarroyo M, Unger JB. Monitoring Tobacco Brand Websites to Understand Marketing Strategies Aimed at Tobacco Product Users and Potential Users. Nicotine & Tobacco Research 2018;20(11):1393
    CrossRef
  18. Zhang Y, Allem J, Unger JB, Boley Cruz T. Automated Identification of Hookahs (Waterpipes) on Instagram: An Application in Feature Extraction Using Convolutional Neural Network and Support Vector Machine Classification. Journal of Medical Internet Research 2018;20(11):e10513
    CrossRef
  19. Park A, Conway M, Chen AT. Examining thematic similarity, difference, and membership in three online mental health communities from reddit: A text mining and visualization approach. Computers in Human Behavior 2018;78:98
    CrossRef
  20. Martinez LS, Hughes S, Walsh-Buhi ER, Tsou M. “Okay, We Get It. You Vape”: An Analysis of Geocoded Content, Context, and Sentiment regarding E-Cigarettes on Twitter. Journal of Health Communication 2018;23(6):550
    CrossRef
  21. Cortese DK, Szczypka G, Emery S, Wang S, Hair E, Vallone D. Smoking Selfies: Using Instagram to Explore Young Women’s Smoking Behaviors. Social Media + Society 2018;4(3):205630511879076
    CrossRef
  22. Curtis B, Giorgi S, Buffone AEK, Ungar LH, Ashford RD, Hemmons J, Summers D, Hamilton C, Schwartz HA, Emmert-Streib F. Can Twitter be used to predict county excessive alcohol consumption rates?. PLOS ONE 2018;13(4):e0194290
    CrossRef
  23. Dijkstra S, Kok G, Ledford JG, Sandalova E, Stevelink R. Possibilities and Pitfalls of Social Media for Translational Medicine. Frontiers in Medicine 2018;5
    CrossRef
  24. Gohil S, Vuik S, Darzi A. Sentiment Analysis of Health Care Tweets: Review of the Methods Used. JMIR Public Health and Surveillance 2018;4(2):e43
    CrossRef
  25. Allem J, Dharmapuri L, Leventhal AM, Unger JB, Boley Cruz T. Hookah-Related Posts to Twitter From 2017 to 2018: Thematic Analysis. Journal of Medical Internet Research 2018;20(11):e11669
    CrossRef
  26. Zeraatkar K, Ahmadi M. Trends of infodemiology studies: a scoping review. Health Information & Libraries Journal 2018;35(2):91
    CrossRef
  27. Waudby-Smith IER, Tran N, Dubin JA, Lee J, van Bogaert P. Sentiment in nursing notes as an indicator of out-of-hospital mortality in intensive care patients. PLOS ONE 2018;13(6):e0198687
    CrossRef
  28. Allem J, Dharmapuri L, Unger JB, Cruz TB. Characterizing JUUL-related posts on Twitter. Drug and Alcohol Dependence 2018;190:1
    CrossRef
  29. Pearson JL, Amato MS, Papandonatos GD, Zhao K, Erar B, Wang X, Cha S, Cohn AM, Graham AL. Exposure to positive peer sentiment about nicotine replacement therapy in an online smoking cessation community is associated with NRT use. Addictive Behaviors 2018;87:39
    CrossRef
  30. Jordan S, Hovet S, Fung I, Liang H, Fu K, Tse Z. Using Twitter for Public Health Surveillance from Monitoring and Prediction to Public Response. Data 2018;4(1):6
    CrossRef
  31. Schwab-Reese LM, Hovdestad W, Tonmyr L, Fluke J. The potential use of social media and other internet-related data and communications for child maltreatment surveillance and epidemiological research: Scoping review and recommendations. Child Abuse & Neglect 2018;85:187
    CrossRef
  32. Jiang K, Feng S, Song Q, Calix RA, Gupta M, Bernard GR. Identifying tweets of personal health experience through word embedding and LSTM neural network. BMC Bioinformatics 2018;19(S8)
    CrossRef
  33. Meng H, Kath S, Li D, Nguyen QC, Giraud-Carrier C. National substance use patterns on Twitter. PLOS ONE 2017;12(11):e0187691
    CrossRef
  34. Skinner AL, Attwood AS, Baddeley R, Evans-Reeves K, Bauld L, Munafò MR. Digital phenotyping and the development and delivery of health guidelines and behaviour change interventions. Addiction 2017;112(7):1281
    CrossRef
  35. Pechmann C, Delucchi K, Lakon CM, Prochaska JJ. Randomised controlled trial evaluation of Tweet2Quit: a social network quit-smoking intervention. Tobacco Control 2017;26(2):188
    CrossRef
  36. Ayers JW, Leas EC, Allem J, Benton A, Dredze M, Althouse BM, Cruz TB, Unger JB, Olson DR. Why do people use electronic nicotine delivery systems (electronic cigarettes)? A content analysis of Twitter, 2012-2015. PLOS ONE 2017;12(3):e0170702
    CrossRef
  37. Nguyen Q, Meng H, Li D, Kath S, McCullough M, Paul D, Kanokvimankul P, Nguyen T, Li F. Social media indicators of the food environment and state health outcomes. Public Health 2017;148:120
    CrossRef
  38. Fogel J, Travis Y. Twitter use related to reality television characters: Association with increased marijuana use. Journal of Organizational Computing and Electronic Commerce 2017;27(2):152
    CrossRef
  39. Allem J, Ramanujam J, Lerman K, Chu K, Boley Cruz T, Unger JB. Identifying Sentiment of Hookah-Related Posts on Twitter. JMIR Public Health and Surveillance 2017;3(4):e74
    CrossRef
  40. Lazard AJ, Wilcox GB, Tuttle HM, Glowacki EM, Pikowski J. Public reactions to e-cigarette regulations on Twitter: a text mining analysis. Tobacco Control 2017;26(e2):e112
    CrossRef
  41. Allem J, Ferrara E, Uppu SP, Cruz TB, Unger JB. E-Cigarette Surveillance With Social Media Data: Social Bots, Emerging Topics, and Trends. JMIR Public Health and Surveillance 2017;3(4):e98
    CrossRef
  42. Chu K, Allem J, Cruz TB, Unger JB. Vaping on Instagram: cloud chasing, hand checks and product placement. Tobacco Control 2017;26(5):575
    CrossRef
  43. Kazemi DM, Borsari B, Levine MJ, Dooley B. Systematic review of surveillance by social media platforms for illicit drug use. Journal of Public Health 2017;39(4):763
    CrossRef
  44. Gerds AT, Chan T. Social Media in Hematology in 2017: Dystopia, Utopia, or Somewhere In-between?. Current Hematologic Malignancy Reports 2017;12(6):582
    CrossRef
  45. Liu JS, Ho MH, Lu LYY, Xiao G. Recent Themes in Social Networking Service Research. PLOS ONE 2017;12(1):e0170293
    CrossRef
  46. Zhu Y. Pro-smoking information scanning using social media predicts young adults' smoking behavior. Computers in Human Behavior 2017;77:19
    CrossRef
  47. Hswen Y, Naslund JA, Chandrashekar P, Siegel R, Brownstein JS, Hawkins JB. Exploring online communication about cigarette smoking among Twitter users who self-identify as having schizophrenia. Psychiatry Research 2017;257:479
    CrossRef
  48. Glasser AM, Collins L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, Villanti AC. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. American Journal of Preventive Medicine 2017;52(2):e33
    CrossRef
  49. Burke-Garcia A, Stanton CA. A tale of two tools: Reliability and feasibility of social media measurement tools examining e-cigarette twitter mentions. Informatics in Medicine Unlocked 2017;8:8
    CrossRef
  50. Young-Wolff KC, Klebaner D, Folck B, Carter-Harris L, Salloum RG, Prochaska JJ, Fogelberg R, Tan AS. Do you vape? Leveraging electronic health records to assess clinician documentation of electronic nicotine delivery system use among adolescents and adults. Preventive Medicine 2017;105:32
    CrossRef
  51. Hébert ET, Case KR, Kelder SH, Delk J, Perry CL, Harrell MB. Exposure and Engagement With Tobacco- and E-Cigarette–Related Social Media. Journal of Adolescent Health 2017;61(3):371
    CrossRef
  52. Paul MJ, Dredze M. Social Monitoring for Public Health. Synthesis Lectures on Information Concepts, Retrieval, and Services 2017;9(5):1
    CrossRef
  53. Mowery D, Smith H, Cheney T, Stoddard G, Coppersmith G, Bryan C, Conway M. Understanding Depressive Symptoms and Psychosocial Stressors on Twitter: A Corpus-Based Study. Journal of Medical Internet Research 2017;19(2):e48
    CrossRef
  54. Lienemann BA, Unger JB, Cruz TB, Chu K. Methods for Coding Tobacco-Related Twitter Data: A Systematic Review. Journal of Medical Internet Research 2017;19(3):e91
    CrossRef
  55. Rose SW, Jo CL, Binns S, Buenger M, Emery S, Ribisl KM. Perceptions of Menthol Cigarettes Among Twitter Users: Content and Sentiment Analysis. Journal of Medical Internet Research 2017;19(2):e56
    CrossRef
  56. Doan S, Ritchart A, Perry N, Chaparro JD, Conway M. How Do You #relax When You’re #stressed? A Content Analysis and Infodemiology Study of Stress-Related Tweets. JMIR Public Health and Surveillance 2017;3(2):e35
    CrossRef
  57. Allem J, Chu K, Cruz TB, Unger JB. Waterpipe Promotion and Use on Instagram: #Hookah. Nicotine & Tobacco Research 2017;:ntw329
    CrossRef
  58. Nielsen RC, Luengo-Oroz M, Mello MB, Paz J, Pantin C, Erkkola T. Social Media Monitoring of Discrimination and HIV Testing in Brazil, 2014–2015. AIDS and Behavior 2017;21(S1):114
    CrossRef
  59. Nguyen QC, McCullough M, Meng H, Paul D, Li D, Kath S, Loomis G, Nsoesie EO, Wen M, Smith KR, Li F. Geotagged US Tweets as Predictors of County-Level Health Outcomes, 2015–2016. American Journal of Public Health 2017;107(11):1776
    CrossRef
  60. Kandadai V, Yang H, Jiang L, Yang CC, Fleisher L, Winston FK. Measuring Health Information Dissemination and Identifying Target Interest Communities on Twitter: Methods Development and Case Study of the @SafetyMD Network. JMIR Research Protocols 2016;5(2):e50
    CrossRef
  61. Li J, Li X, Zhu B. User opinion classification in social media: A global consistency maximization approach. Information & Management 2016;53(8):987
    CrossRef
  62. Payne JD, Orellana-Barrios M, Medrano-Juarez R, Buscemi D, Nugent K. Electronic Cigarettes in the Media. Baylor University Medical Center Proceedings 2016;29(3):280
    CrossRef
  63. van der Tempel J, Noormohamed A, Schwartz R, Norman C, Malas M, Zawertailo L. Vape, quit, tweet? Electronic cigarettes and smoking cessation on Twitter. International Journal of Public Health 2016;61(2):249
    CrossRef
  64. Massey PM, Leader A, Yom-Tov E, Budenz A, Fisher K, Klassen AC. Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter. Journal of Medical Internet Research 2016;18(12):e318
    CrossRef
  65. Cavazos-Rehg PA, Sowles SJ, Krauss MJ, Agbonavbare V, Grucza R, Bierut L. A content analysis of tweets about high-potency marijuana. Drug and Alcohol Dependence 2016;166:100
    CrossRef
  66. Hamad EO, Savundranayagam MY, Holmes JD, Kinsella EA, Johnson AM. Toward a Mixed-Methods Research Approach to Content Analysis in The Digital Age: The Combined Content-Analysis Model and its Applications to Health Care Twitter Feeds. Journal of Medical Internet Research 2016;18(3):e60
    CrossRef
  67. Conway M, Khojoyan A, Fana F, Scuba W, Castine M, Mowery D, Chapman W, Jupp S. Developing a web-based SKOS editor. Journal of Biomedical Semantics 2016;7(1)
    CrossRef
  68. Salloum RG, Asfar T, Maziak W. Toward a Regulatory Framework for the Waterpipe. American Journal of Public Health 2016;106(10):1773
    CrossRef
  69. Kavuluru R, Sabbir A. Toward automated e-cigarette surveillance: Spotting e-cigarette proponents on Twitter. Journal of Biomedical Informatics 2016;61:19
    CrossRef
  70. Primack BA, Carroll MV, Shensa A, Davis W, Levine MD. Sex Differences in Hookah-Related Images Posted on Tumblr: A Content Analysis. Journal of Health Communication 2016;21(3):366
    CrossRef
  71. Dwyer R, Fraser S. Addicting via Hashtags. Contemporary Drug Problems 2016;43(1):79
    CrossRef
  72. Al-garadi MA, Varathan KD, Ravana SD. Cybercrime detection in online communications: The experimental case of cyberbullying detection in the Twitter network. Computers in Human Behavior 2016;63:433
    CrossRef
  73. Kim Y, Huang J, Emery S. Garbage in, Garbage Out: Data Collection, Quality Assessment and Reporting Standards for Social Media Data Use in Health Research, Infodemiology and Digital Disease Detection. Journal of Medical Internet Research 2016;18(2):e41
    CrossRef
  74. Cavazos-Rehg PA, Krauss MJ, Sowles SJ, Bierut LJ. Marijuana-Related Posts on Instagram. Prevention Science 2016;17(6):710
    CrossRef
  75. Nguyen QC, Li D, Meng H, Kath S, Nsoesie E, Li F, Wen M. Building a National Neighborhood Dataset From Geotagged Twitter Data for Indicators of Happiness, Diet, and Physical Activity. JMIR Public Health and Surveillance 2016;2(2):e158
    CrossRef
  76. Ahmed S, Jaidka K, Cho J. The 2014 Indian elections on Twitter: A comparison of campaign strategies of political parties. Telematics and Informatics 2016;33(4):1071
    CrossRef
  77. Chung JE. A Smoking Cessation Campaign on Twitter: Understanding the Use of Twitter and Identifying Major Players in a Health Campaign. Journal of Health Communication 2016;21(5):517
    CrossRef
  78. Lazard AJ, Saffer AJ, Wilcox GB, Chung AD, Mackert MS, Bernhardt JM. E-Cigarette Social Media Messages: A Text Mining Analysis of Marketing and Consumer Conversations on Twitter. JMIR Public Health and Surveillance 2016;2(2):e171
    CrossRef
  79. Daniulaityte R, Chen L, Lamy FR, Carlson RG, Thirunarayan K, Sheth A. “When ‘Bad’ is ‘Good’”: Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health and Surveillance 2016;2(2):e162
    CrossRef
  80. Mikal J, Hurst S, Conway M. Ethical issues in using Twitter for population-level depression monitoring: a qualitative study. BMC Medical Ethics 2016;17(1)
    CrossRef
  81. Conway M, O’Connor D. Social media, big data, and mental health: current advances and ethical implications. Current Opinion in Psychology 2016;9:77
    CrossRef
  82. Fogel J, Shlivko A. Reality Television Programs Are Associated With Illegal Drug Use and Prescription Drug Misuse Among College Students. Substance Use & Misuse 2016;51(1):62
    CrossRef
  83. Kolliakou A, Ball M, Derczynski L, Chandran D, Gkotsis G, Deluca P, Jackson R, Shetty H, Stewart R. Novel psychoactive substances: An investigation of temporal trends in social media and electronic health records. European Psychiatry 2016;38:15
    CrossRef
  84. Steers MN, Moreno MA, Neighbors C. The Influence of Social Media on Addictive Behaviors in College Students. Current Addiction Reports 2016;3(4):343
    CrossRef
  85. Cole-Lewis H, Pugatch J, Sanders A, Varghese A, Posada S, Yun C, Schwarz M, Augustson E. Social Listening: A Content Analysis of E-Cigarette Discussions on Twitter. Journal of Medical Internet Research 2015;17(10):e243
    CrossRef
  86. Finfgeld-Connett D. Twitter and Health Science Research. Western Journal of Nursing Research 2015;37(10):1269
    CrossRef
  87. Kendra RL, Karki S, Eickholt JL, Gandy L. Characterizing the Discussion of Antibiotics in the Twittersphere: What is the Bigger Picture?. Journal of Medical Internet Research 2015;17(6):e154
    CrossRef
  88. Katsuki T, Mackey TK, Cuomo R. Establishing a Link Between Prescription Drug Abuse and Illicit Online Pharmacies: Analysis of Twitter Data. Journal of Medical Internet Research 2015;17(12):e280
    CrossRef
  89. Akl EA, Ward KD, Bteddini D, Khaliel R, Alexander AC, Lotfi T, Alaouie H, Afifi RA. The allure of the waterpipe: a narrative review of factors affecting the epidemic rise in waterpipe smoking among young persons globally. Tobacco Control 2015;24(Suppl 1):i13
    CrossRef
  90. Chen AT, Zhu S, Conway M. What Online Communities Can Tell Us About Electronic Cigarettes and Hookah Use: A Study Using Text Mining and Visualization Techniques. Journal of Medical Internet Research 2015;17(9):e220
    CrossRef
  91. Wang S, Paul MJ, Dredze M. Social Media as a Sensor of Air Quality and Public Response in China. Journal of Medical Internet Research 2015;17(3):e22
    CrossRef
  92. Chan B, Lopez A, Sarkar U, Hildt E. The Canary in the Coal Mine Tweets: Social Media Reveals Public Perceptions of Non-Medical Use of Opioids. PLOS ONE 2015;10(8):e0135072
    CrossRef
  93. Alvaro N, Conway M, Doan S, Lofi C, Overington J, Collier N. Crowdsourcing Twitter annotations to identify first-hand experiences of prescription drug use. Journal of Biomedical Informatics 2015;58:280
    CrossRef
  94. Sznitman S. Analysing Twitter as an Opportunity to Understand Substance Use. SSRN Electronic Journal 2015;
    CrossRef
  95. Cavazos-Rehg PA, Krauss M, Fisher SL, Salyer P, Grucza RA, Bierut LJ. Twitter Chatter About Marijuana. Journal of Adolescent Health 2015;56(2):139
    CrossRef
  96. Kim AE, Hopper T, Simpson S, Nonnemaker J, Lieberman AJ, Hansen H, Guillory J, Porter L. Using Twitter Data to Gain Insights into E-cigarette Marketing and Locations of Use: An Infoveillance Study. Journal of Medical Internet Research 2015;17(11):e251
    CrossRef
  97. McCoy TH, Castro VM, Cagan A, Roberson AM, Kohane IS, Perlis RH, Ramagopalan SV. Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study. PLOS ONE 2015;10(8):e0136341
    CrossRef
  98. Groves RM. "Can I Profit from My Own Name and Likeness as a College Athlete?": The Predictive Legal Analytics of a College Player's Publicity Rights vs. First Amendment Rights of Others. Indiana Law Review 2015;48(2):369
    CrossRef
  99. R. Scott K, Nelson L, Meisel Z, Perrone J. Opportunities for Exploring and Reducing Prescription Drug Abuse Through Social Media. Journal of Addictive Diseases 2015;34(2-3):178
    CrossRef
  100. Krauss MJ, Sowles SJ, Moreno M, Zewdie K, Grucza RA, Bierut LJ, Cavazos-Rehg PA. Hookah-Related Twitter Chatter: A Content Analysis. Preventing Chronic Disease 2015;12
    CrossRef
  101. Cole-Lewis H, Varghese A, Sanders A, Schwarz M, Pugatch J, Augustson E. Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning. Journal of Medical Internet Research 2015;17(8):e208
    CrossRef
  102. Haddad L, El-Shahawy O, Ghadban R, Barnett T, Johnson E. Waterpipe Smoking and Regulation in the United States: A Comprehensive Review of the Literature. International Journal of Environmental Research and Public Health 2015;12(6):6115
    CrossRef
  103. Cawkwell PB, Lee L, Weitzman M, Sherman SE. Tracking Hookah Bars in New York: Utilizing Yelp as a Powerful Public Health Tool. JMIR Public Health and Surveillance 2015;1(2):e19
    CrossRef
  104. Shutler L, Nelson LS, Portelli I, Blachford C, Perrone J. Drug Use in the Twittersphere: A Qualitative Contextual Analysis of Tweets About Prescription Drugs. Journal of Addictive Diseases 2015;34(4):303
    CrossRef
  105. Pechmann C, Pan L, Delucchi K, Lakon CM, Prochaska JJ. Development of a Twitter-Based Intervention for Smoking Cessation that Encourages High-Quality Social Media Interactions via Automessages. Journal of Medical Internet Research 2015;17(2):e50
    CrossRef
  106. Nascimento TD, DosSantos MF, Danciu T, DeBoer M, van Holsbeeck H, Lucas SR, Aiello C, Khatib L, Bender MA, Zubieta J, DaSilva AF. Real-Time Sharing and Expression of Migraine Headache Suffering on Twitter: A Cross-Sectional Infodemiology Study. Journal of Medical Internet Research 2014;16(4):e96
    CrossRef
  107. Huang J, Kornfield R, Szczypka G, Emery SL. A cross-sectional examination of marketing of electronic cigarettes on Twitter. Tobacco Control 2014;23(suppl 3):iii26
    CrossRef
  108. Conway M. Ethical Issues in Using Twitter for Public Health Surveillance and Research: Developing a Taxonomy of Ethical Concepts From the Research Literature. Journal of Medical Internet Research 2014;16(12):e290
    CrossRef
  109. Cavazos-Rehg P, Krauss M, Grucza R, Bierut L. Characterizing the Followers and Tweets of a Marijuana-Focused Twitter Handle. Journal of Medical Internet Research 2014;16(6):e157
    CrossRef
  110. Young SD. Behavioral insights on big data: using social media for predicting biomedical outcomes. Trends in Microbiology 2014;22(11):601
    CrossRef
  111. Zhang N, Campo S, Janz KF, Eckler P, Yang J, Snetselaar LG, Signorini A. Electronic Word of Mouth on Twitter About Physical Activity in the United States: Exploratory Infodemiology Study. Journal of Medical Internet Research 2013;15(11):e261
    CrossRef
  112. Thackeray R, Neiger BL, Burton SH, Thackeray CR. Analysis of the Purpose of State Health Departments' Tweets: Information Sharing, Engagement, and Action. Journal of Medical Internet Research 2013;15(11):e255
    CrossRef
  113. Zhu S, Gamst A, Lee M, Cummins S, Yin L, Zoref L, Blum A. The Use and Perception of Electronic Cigarettes and Snus among the U.S. Population. PLoS ONE 2013;8(10):e79332
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/jmir.2534)

:
  1. Optican A, Cavazos-Rehg PA. Child and Adolescent Psychiatry and the Media. 2019. :61
    CrossRef
  2. Bibi S, Hussain S, Ahmed M, Zeb MS. New Knowledge in Information Systems and Technologies. 2019. Chapter 49:500
    CrossRef
  3. Khan I, Naqvi SK, Alam M, Rizvi SNA. Big Data Analytics. 2018. Chapter 29:297
    CrossRef
  4. Hu H, Phan N, Geller J, Vo H, Manasi B, Huang X, Di Lorio S, Dinh T, Chun SA. Computational Data and Social Networks. 2018. Chapter 28:330
    CrossRef
  5. Lombi L. Clinical Handbook of Air Pollution-Related Diseases. 2018. Chapter 33:621
    CrossRef
  6. Grover P, Kar AK, Dwivedi YK, Janssen M. Digital Nations – Smart Cities, Innovation, and Sustainability. 2017. Chapter 30:339
    CrossRef
  7. Shah GH, Alfonso ML, Jolani N. Public Health and Welfare. 2017. chapter 21:437
    CrossRef
  8. Epure EV, Deneckere R, Salinesi C. Artificial Intelligence in Medicine. 2017. Chapter 19:182
    CrossRef
  9. Nguyen A, Pham H, Nguyen D, Tran T. Public Health Intelligence and the Internet. 2017. Chapter 7:107
    CrossRef
  10. Lazar J, Feng JH, Hochheiser H. Research Methods in Human Computer Interaction. 2017. :411
    CrossRef
  11. Mayer M, Fernández-Luque L, Leis A. Participatory Health Through Social Media. 2016. :67
    CrossRef
  12. Anwar M, Yuan Z. Smart Health. 2016. Chapter 24:254
    CrossRef
  13. Godea AK, Caragea C, Bulgarov FA, Ramisetty-Mikler S. Artificial Intelligence in Medicine. 2015. Chapter 27:205
    CrossRef
  14. Shah GH, Alfonso ML, Jolani N. Implications of Social Media Use in Personal and Professional Settings. 2015. chapter 2:25
    CrossRef