Published on 05.10.12 in Vol 14, No 5 (2012): Sep-Oct
Works citing "Classification Accuracies of Physical Activities Using Smartphone Motion Sensors"
According to Crossref, the following articles are citing this article (DOI 10.2196/jmir.2208):
(note that this is only a small subset of citations)
-
Cheng X, Fang L, Yang L. Mobile Big Data Based Network Intelligence. IEEE Internet of Things Journal 2018;5(6):4365
CrossRef -
Pande A, Mohapatra P, Nicorici A, Han JJ. Machine Learning to Improve Energy Expenditure Estimation in Children With Disabilities: A Pilot Study in Duchenne Muscular Dystrophy. JMIR Rehabilitation and Assistive Technologies 2016;3(2):e7
CrossRef -
Park E, Chang H, Nam HS. Use of Machine Leaning Classifiers and Sensor Data to Detect Neurological Deficit in Stroke Patients. Journal of Medical Internet Research 2017;19(4):e120
CrossRef -
Crizer MP, Kazarian GS, Fleischman AN, Lonner JH, Maltenfort MG, Chen AF. Stepping Toward Objective Outcomes: A Prospective Analysis of Step Count After Total Joint Arthroplasty. The Journal of Arthroplasty 2017;32(9):S162
CrossRef -
Keefe RF, Zimbelman EG, Wempe AM. Use of smartphone sensors to quantify the productive cycle elements of hand fallers on industrial cable logging operations. International Journal of Forest Engineering 2019;30(2):132
CrossRef -
Payne HE, Lister C, West JH, Bernhardt JM. Behavioral Functionality of Mobile Apps in Health Interventions: A Systematic Review of the Literature. JMIR mHealth and uHealth 2015;3(1):e20
CrossRef -
Saha J, Chowdhury C, Biswas S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsystem Technologies 2018;24(6):2737
CrossRef -
Chen Y, Shen C. Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition. IEEE Access 2017;5:3095
CrossRef -
Kim K, Lee M. Image Obfuscation in the User-Friendly Sensitive Area with the Use of a Sensor for Smart Devices and Image Processing Techniques. International Journal of Distributed Sensor Networks 2014;10(5):797353
CrossRef -
Majumder S, Deen MJ. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors 2019;19(9):2164
CrossRef -
Bort-Roig J, Gilson ND, Puig-Ribera A, Contreras RS, Trost SG. Measuring and Influencing Physical Activity with Smartphone Technology: A Systematic Review. Sports Medicine 2014;44(5):671
CrossRef -
Saha J, Chowdhury C, Roy Chowdhury I, Biswas S, Aslam N. An Ensemble of Condition Based Classifiers for Device Independent Detailed Human Activity Recognition Using Smartphones †. Information 2018;9(4):94
CrossRef -
Winand M, Ng A, Byers T. Pokémon “Go” but for how long?: a qualitative analysis of motivation to play and sustainability of physical activity behaviour in young adults using mobile augmented reality. Managing Sport and Leisure 2020;:1
CrossRef -
San-Segundo R, Montero JM, Barra-Chicote R, Fernández F, Pardo JM. Feature extraction from smartphone inertial signals for human activity segmentation. Signal Processing 2016;120:359
CrossRef -
Wan S, Qi L, Xu X, Tong C, Gu Z. Deep Learning Models for Real-time Human Activity Recognition with Smartphones. Mobile Networks and Applications 2020;25(2):743
CrossRef -
Shoaib M, Bosch S, Incel O, Scholten H, Havinga P. Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors 2014;14(6):10146
CrossRef -
Jim HSL, Hoogland AI, Brownstein NC, Barata A, Dicker AP, Knoop H, Gonzalez BD, Perkins R, Rollison D, Gilbert SM, Nanda R, Berglund A, Mitchell R, Johnstone PAS. Innovations in research and clinical care using patient‐generated health data. CA: A Cancer Journal for Clinicians 2020;70(3):182
CrossRef -
Mateos-Angulo A, Galán-Mercant A, Cuesta-Vargas AI. Kinematic Mobile Drop Jump Analysis at Different Heights Based on a Smartphone Inertial Sensor. Journal of Human Kinetics 2020;73(1):57
CrossRef -
Hobert MA, Maetzler W, Aminian K, Chiari L. Technical and clinical view on ambulatory assessment in Parkinson's disease. Acta Neurologica Scandinavica 2014;130(3):139
CrossRef -
Lawanont W, Inoue M, Mongkolnam P, Nukoolkit C. Neck posture monitoring system based on image detection and smartphone sensors using the prolonged usage classification concept. IEEJ Transactions on Electrical and Electronic Engineering 2018;13(10):1501
CrossRef -
Lokare N, Zhong B, Lobaton E. Activity-Aware Physiological Response Prediction Using Wearable Sensors. Inventions 2017;2(4):32
CrossRef -
Miller MB, Meier E, Lombardi N, Leffingwell TR. Theories of behaviour change and personalised feedback interventions for college student drinking. Addiction Research & Theory 2015;23(4):322
CrossRef -
Acampora G, Minopoli G, Musella F, Staffa M. Classification of Transition Human Activities in IoT Environments via Memory-Based Neural Networks. Electronics 2020;9(3):409
CrossRef -
Romeo A, Edney S, Plotnikoff R, Curtis R, Ryan J, Sanders I, Crozier A, Maher C. Can Smartphone Apps Increase Physical Activity? Systematic Review and Meta-Analysis. Journal of Medical Internet Research 2019;21(3):e12053
CrossRef -
Mimura K, Kishino H, Karino G, Nitta E, Senoo A, Ikegami K, Kunikata T, Yamanouchi H, Nakamura S, Sato K, Koshiba M. Potential of a smartphone as a stress-free sensor of daily human behaviour. Behavioural Brain Research 2015;276:181
CrossRef -
Ebrahimi M, Aghagolzadeh P, Shamabadi N, Tahmasebi A, Alsharifi M, Adelson DL, Hemmatzadeh F, Ebrahimie E, Tompkins SM. Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein. PLoS ONE 2014;9(5):e96984
CrossRef -
Smolders R, De Boever P. Perspectives for environment and health research in Horizon 2020: Dark ages or golden era?. International Journal of Hygiene and Environmental Health 2014;217(8):891
CrossRef -
Xu S, Tang Q, Jin L, Pan Z. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Sensors 2019;19(10):2307
CrossRef -
Lendner N, Wells E, Lavi I, Kwok YY, Ho P, Wollstein R. Utility of the iPhone 4 Gyroscope Application in the Measurement of Wrist Motion. HAND 2019;14(3):352
CrossRef -
Jain A, Kanhangad V. Human Activity Classification in Smartphones Using Accelerometer and Gyroscope Sensors. IEEE Sensors Journal 2018;18(3):1169
CrossRef -
Della Mea V, Quattrin O, Parpinel M. A feasibility study on smartphone accelerometer-based recognition of household activities and influence of smartphone position. Informatics for Health and Social Care 2017;42(4):321
CrossRef -
Liu C, Chan C. Exercise Performance Measurement with Smartphone Embedded Sensor for Well-Being Management. International Journal of Environmental Research and Public Health 2016;13(10):1001
CrossRef -
Goyal S, Morita P, Lewis GF, Yu C, Seto E, Cafazzo JA. The Systematic Design of a Behavioural Mobile Health Application for the Self-Management of Type 2 Diabetes. Canadian Journal of Diabetes 2016;40(1):95
CrossRef -
San-Segundo R, Lorenzo-Trueba J, Martínez-González B, Pardo JM. Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive and Mobile Computing 2016;30:84
CrossRef -
Guo S, Xiong H, Zheng X, Zhou Y. Activity Recognition and Semantic Description for Indoor Mobile Localization. Sensors 2017;17(3):649
CrossRef -
Zhou B, Yang J, Li Q. Smartphone-Based Activity Recognition for Indoor Localization Using a Convolutional Neural Network. Sensors 2019;19(3):621
CrossRef -
Vallabh P, Malekian R. Fall detection monitoring systems: a comprehensive review. Journal of Ambient Intelligence and Humanized Computing 2018;9(6):1809
CrossRef -
Tobore I, Li J, Yuhang L, Al-Handarish Y, Kandwal A, Nie Z, Wang L. Deep Learning Intervention for Health Care Challenges: Some Biomedical Domain Considerations. JMIR mHealth and uHealth 2019;7(8):e11966
CrossRef -
Arif M, Bilal M, Kattan A, Ahamed SI. Better Physical Activity Classification using Smartphone Acceleration Sensor. Journal of Medical Systems 2014;38(9)
CrossRef -
Sheng B, Moosman OM, Del Pozo-Cruz B, Del Pozo-Cruz J, Alfonso-Rosa RM, Zhang Y. A comparison of different machine learning algorithms, types and placements of activity monitors for physical activity classification. Measurement 2020;154:107480
CrossRef -
Wang Y, Cang S, Yu H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Systems with Applications 2019;137:167
CrossRef -
Fanning J, Mullen SP, McAuley E. Increasing Physical Activity With Mobile Devices: A Meta-Analysis. Journal of Medical Internet Research 2012;14(6):e161
CrossRef -
Nurmi J, Knittle K, Ginchev T, Khattak F, Helf C, Zwickl P, Castellano-Tejedor C, Lusilla-Palacios P, Costa-Requena J, Ravaja N, Haukkala A. Engaging Users in the Behavior Change Process With Digitalized Motivational Interviewing and Gamification: Development and Feasibility Testing of the Precious App. JMIR mHealth and uHealth 2020;8(1):e12884
CrossRef -
Sullivan AN, Lachman ME. Behavior Change with Fitness Technology in Sedentary Adults: A Review of the Evidence for Increasing Physical Activity. Frontiers in Public Health 2017;4
CrossRef -
Cornacchia M, Ozcan K, Zheng Y, Velipasalar S. A Survey on Activity Detection and Classification Using Wearable Sensors. IEEE Sensors Journal 2017;17(2):386
CrossRef -
Xia S, Wei P, Vega JM, Jiang X. SPINDLES+: An adaptive and personalized system for leg shake detection. Smart Health 2018;9-10:204
CrossRef -
Lisiński , Wareńczak , Hejdysz , Sip , Gośliński , Owczarek , Jonak , Goślińska . Mobile Applications in Evaluations of Knee Joint Kinematics: A Pilot Study. Sensors 2019;19(17):3675
CrossRef -
Ronao CA, Cho S. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Systems with Applications 2016;59:235
CrossRef -
Liu C, Chan C. An Accumulated Activity Effective Index for Promoting Physical Activity: A Design and Development Study in a Mobile and Pervasive Health Context. JMIR Research Protocols 2015;4(1):e5
CrossRef -
Ozcan K, Velipasalar S. Wearable Camera- and Accelerometer-Based Fall Detection on Portable Devices. IEEE Embedded Systems Letters 2016;8(1):6
CrossRef -
Wan N, Wen M, Fan JX, Tavake-Pasi OF, McCormick S, Elliott K, Nicolosi E. Physical Activity Barriers and Facilitators Among US Pacific Islanders and the Feasibility of Using Mobile Technologies for Intervention: A Focus Group Study With Tongan Americans. Journal of Physical Activity and Health 2018;15(4):287
CrossRef -
Dowd KP, Szeklicki R, Minetto MA, Murphy MH, Polito A, Ghigo E, van der Ploeg H, Ekelund U, Maciaszek J, Stemplewski R, Tomczak M, Donnelly AE. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. International Journal of Behavioral Nutrition and Physical Activity 2018;15(1)
CrossRef -
Cheng X, Fang L, Yang L, Cui S. Mobile Big Data: The Fuel for Data-Driven Wireless. IEEE Internet of Things Journal 2017;4(5):1489
CrossRef -
Choi S, Moon J, Park H, Choi ST. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole. Sensors 2019;19(17):3785
CrossRef -
Stöggl T, Holst A, Jonasson A, Andersson E, Wunsch T, Norström C, Holmberg H. Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone. Sensors 2014;14(11):20589
CrossRef -
Prabha P A, R S, R S, T G S. Recurrent Neural Network for Human Action Recognition using Star Skeletonization. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2019;:335
CrossRef -
Wang Q, Egelandsdal B, Amdam GV, Almli VL, Oostindjer M. Diet and Physical Activity Apps: Perceived Effectiveness by App Users. JMIR mHealth and uHealth 2016;4(2):e33
CrossRef -
López-Nava I, Muñoz-Meléndez A, Pérez Sanpablo A, Alessi Montero A, Quiñones Urióstegui I, Núñez Carrera L. Estimation of temporal gait parameters using Bayesian models on acceleration signals. Computer Methods in Biomechanics and Biomedical Engineering 2016;19(4):396
CrossRef -
Saez Y, Baldominos A, Isasi P. A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity Recognition. Sensors 2016;17(12):66
CrossRef -
Yang X, Ma L, Zhao X, Kankanhalli A. Factors influencing user’s adherence to physical activity applications: A scoping literature review and future directions. International Journal of Medical Informatics 2020;134:104039
CrossRef -
Zhou X, Yu W, Sullivan WC. Making pervasive sensing possible: Effective travel mode sensing based on smartphones. Computers, Environment and Urban Systems 2016;58:52
CrossRef -
Lonini L, Gupta A, Deems-Dluhy S, Hoppe-Ludwig S, Kording K, Jayaraman A. Activity Recognition in Individuals Walking With Assistive Devices: The Benefits of Device-Specific Models. JMIR Rehabilitation and Assistive Technologies 2017;4(2):e8
CrossRef -
Hassan MM, Uddin MZ, Mohamed A, Almogren A. A robust human activity recognition system using smartphone sensors and deep learning. Future Generation Computer Systems 2018;81:307
CrossRef -
Sun Z, Tang S, Huang H, Zhu Z, Guo H, Sun Y, Huang L. SOS: Real-time and accurate physical assault detection using smartphone. Peer-to-Peer Networking and Applications 2017;10(2):395
CrossRef -
Guo H, Huang H, Huang L, Sun Y. Recognizing the Operating Hand and the Hand-Changing Process for User Interface Adjustment on Smartphones. Sensors 2016;16(8):1314
CrossRef -
Bagot K, Matthews S, Mason M, Squeglia LM, Fowler J, Gray K, Herting M, May A, Colrain I, Godino J, Tapert S, Brown S, Patrick K. Current, future and potential use of mobile and wearable technologies and social media data in the ABCD study to increase understanding of contributors to child health. Developmental Cognitive Neuroscience 2018;32:121
CrossRef -
Faria GS, Polese JC, Ribeiro-Samora GA, Scianni AA, Faria CD, Teixeira-Salmela LF. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Brazilian Journal of Physical Therapy 2019;23(3):236
CrossRef -
Wang Z, Yang Z, Dong T. A Review of Wearable Technologies for Elderly Care that Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors 2017;17(2):341
CrossRef -
Park S, Kim M, Bae H, Cha Y. The Reliability and Validity of Hip Range of Motion Measurement using a Smart phone Operative Patient. Journal of the Korean Society of Physical Medicine 2015;10(2):1
CrossRef -
Donaire-Gonzalez D, de Nazelle A, Seto E, Mendez M, Nieuwenhuijsen MJ, Jerrett M. Comparison of Physical Activity Measures Using Mobile Phone-Based CalFit and Actigraph. Journal of Medical Internet Research 2013;15(6):e111
CrossRef -
Panchal UK, Ajmani H, Sait SY. Flooding Level Classification by Gait Analysis of Smartphone Sensor Data. IEEE Access 2019;7:181678
CrossRef -
Sansano E, Montoliu R, Belmonte Fernández . A study of deep neural networks for human activity recognition. Computational Intelligence 2020;36(3):1113
CrossRef -
Gietzelt M, Wolf K, Kohlmann M, Marschollek M, Haux R. Measurement of Accelerometry-based Gait Parameters in People with and without Dementia in the Field. Methods of Information in Medicine 2013;52(04):319
CrossRef -
Graham D, Suzuki A, Reitz C, Saxena A, Kuo J, Tetsworth K. Measurement of rotational deformity: using a smartphone application is more accurate than conventional methods. ANZ Journal of Surgery 2013;83(12):937
CrossRef -
Shoaib M, Bosch S, Incel O, Scholten H, Havinga P. A Survey of Online Activity Recognition Using Mobile Phones. Sensors 2015;15(1):2059
CrossRef -
Ciman M, Donini M, Gaggi O, Aiolli F. Stairstep recognition and counting in a serious Game for increasing users’ physical activity. Personal and Ubiquitous Computing 2016;20(6):1015
CrossRef -
Gao M, Zöllner JM. Sparse Contextual Task Learning and Classification to Assist Mobile Robot Teleoperation with Introspective Estimation. Journal of Intelligent & Robotic Systems 2019;93(3-4):571
CrossRef -
Reyes-Ortiz J, Oneto L, Samà A, Parra X, Anguita D. Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing 2016;171:754
CrossRef -
Lister C, West JH, Cannon B, Sax T, Brodegard D. Just a Fad? Gamification in Health and Fitness Apps. JMIR Serious Games 2014;2(2):e9
CrossRef -
Bardus M, Smith JR, Samaha L, Abraham C. Mobile Phone and Web 2.0 Technologies for Weight Management: A Systematic Scoping Review. Journal of Medical Internet Research 2015;17(11):e259
CrossRef -
Shen C, Chen Y, Yang G, Guan X. Toward Hand-Dominated Activity Recognition Systems With Wristband-Interaction Behavior Analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2020;50(7):2501
CrossRef -
San-Segundo R, Montero J, Moreno-Pimentel J, Pardo J. HMM Adaptation for Improving a Human Activity Recognition System. Algorithms 2016;9(3):60
CrossRef -
Khan UA, Khan IA, Din A, Jadoon W, Jadoon RN, Khan MA, Khan FG, Khan AN. Towards a Complete Set of Gym Exercises Detection Using Smartphone Sensors. Scientific Programming 2020;2020:1
CrossRef -
Ozcan K, Velipasalar S, Varshney PK. Autonomous Fall Detection With Wearable Cameras by Using Relative Entropy Distance Measure. IEEE Transactions on Human-Machine Systems 2016;:1
CrossRef -
Bort-Roig J, Puig-Ribera A, Contreras RS, Chirveches-Pérez E, Martori JC, Gilson ND, McKenna J. Monitoring sedentary patterns in office employees: validity of an m-health tool (Walk@Work-App) for occupational health. Gaceta Sanitaria 2018;32(6):563
CrossRef -
Zhuo S, Sherlock L, Dobbie G, Koh YS, Russello G, Lottridge D. Real-time Smartphone Activity Classification Using Inertial Sensors—Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking. Sensors 2020;20(3):655
CrossRef -
Pernek I, Kurillo G, Stiglic G, Bajcsy R. Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics 2015;58:145
CrossRef -
Li P, Wang Y, Tian Y, Zhou T, Li J. An Automatic User-adapted Physical Activity Classification Method Using Smartphones. IEEE Transactions on Biomedical Engineering 2016;:1
CrossRef -
Vanhelst J, Béghin L, Duhamel A, De Henauw S, Ruiz JR, Kafatos A, Manios Y, Widhalm K, Mauro B, Sjöström M, Gottrand F. Physical activity awareness of European adolescents: The HELENA study. Journal of Sports Sciences 2018;36(5):558
CrossRef -
Jung-Min Lee , Gregory J. Welk , Timothy R. Derrick , Young-Won Kim , 권이석 . Feasibility of Calibrating Smartphone to Access Physical Activity. The Korean Journal of Measurement and Evaluation in Physical Education and Sports Science 2015;17(3):49
CrossRef -
Pires IM, Teixeira MC, Pombo N, Garcia NM, Flórez-Revuelta F, Spinsante S, Goleva R, Zdravevski E. Android Library for Recognition of Activities of Daily Living: Implementation Considerations, Challenges, and Solutions. The Open Bioinformatics Journal 2018;11(1):61
CrossRef -
Wang A, Chen G, Yang J, Zhao S, Chang C. A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone. IEEE Sensors Journal 2016;16(11):4566
CrossRef -
Sathyanarayana A, Joty S, Fernandez-Luque L, Ofli F, Srivastava J, Elmagarmid A, Arora T, Taheri S. Sleep Quality Prediction From Wearable Data Using Deep Learning. JMIR mHealth and uHealth 2016;4(4):e125
CrossRef -
Trowbridge MJ, Pickell SG, Pyke CR, Jutte DP. Building Healthy Communities: Establishing Health And Wellness Metrics For Use Within The Real Estate Industry. Health Affairs 2014;33(11):1923
CrossRef -
Chen J, Tan H, Pan Z. Experimental validation of smartphones for measuring human-induced loads. Smart Structures and Systems 2016;18(3):625
CrossRef
According to Crossref, the following books are citing this article (DOI 10.2196/jmir.2208):
-
Oniga S, Pop-Sitar P. Hybrid Artificial Intelligent Systems. 2013. Chapter 52:520
CrossRef -
Lu Y, Velipasalar S. Embedded, Cyber-Physical, and IoT Systems. 2020. Chapter 7:149
CrossRef -
Rovniak LS, King AC. Walking. 2017. :249
CrossRef -
Yu Z, Huang L, Guo H, Xu H. Knowledge Science, Engineering and Management. 2016. Chapter 36:453
CrossRef -
Shoaib M, Incel OD, Scholten H, Havinga P. Mobile Computing, Applications, and Services. 2018. Chapter 7:106
CrossRef -
Liu B, Koc AB. Encyclopedia of Mobile Phone Behavior. 2015. chapter 35:410
CrossRef -
Zhao Y, Li Q, Farha F, Zhu T, Chen L, Ning H. Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health. 2019. Chapter 15:205
CrossRef -
Jiang X, Lu Y, Lu Z, Zhou H. Web and Big Data. 2018. Chapter 10:101
CrossRef -
Piwek L, Joinson A. Behavior Change Research and Theory. 2017. :137
CrossRef -
Oneto L, Ortiz JL, Anguita D. Adaptive Mobile Computing. 2017. :127
CrossRef -
Sadouk L, Gadi T. Lecture Notes in Real-Time Intelligent Systems. 2019. Chapter 43:485
CrossRef -
Cheng X, Fang L, Yang L, Cui S. Mobile Big Data. 2018. Chapter 5:51
CrossRef -
Gaur S, Gupta GP. ICDSMLA 2019. 2020. Chapter 79:734
CrossRef -
Singh D, Merdivan E, Psychoula I, Kropf J, Hanke S, Geist M, Holzinger A. Machine Learning and Knowledge Extraction. 2017. Chapter 18:267
CrossRef -
Ghorrati Z, Matson ET. Advances in Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS Collection. 2019. Chapter 8:90
CrossRef -
Zhao Z, Sun Z, Huang L, Guo H, Wang J, Xu H. Wireless Algorithms, Systems, and Applications. 2016. Chapter 17:186
CrossRef -
Lehsan K, Bootkrajang J. Intelligent Data Engineering and Automated Learning – IDEAL 2017. 2017. Chapter 5:36
CrossRef