Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?


Currently submitted to: Journal of Medical Internet Research

Date Submitted: Jan 28, 2020
Open Peer Review Period: Jun 1, 2020 - Jun 12, 2020
(closed for review but you can still tweet)

NOTE: This is an unreviewed Preprint

Warning: This is a unreviewed preprint (What is a preprint?). Readers are warned that the document has not been peer-reviewed by expert/patient reviewers or an academic editor, may contain misleading claims, and is likely to undergo changes before final publication, if accepted, or may have been rejected/withdrawn (a note "no longer under consideration" will appear above).

Peer-review me: Readers with interest and expertise are encouraged to sign up as peer-reviewer, if the paper is within an open peer-review period (in this case, a "Peer-Review Me" button to sign up as reviewer is displayed above). All preprints currently open for review are listed here. Outside of the formal open peer-review period we encourage you to tweet about the preprint.

Citation: Please cite this preprint only for review purposes or for grant applications and CVs (if you are the author).

Final version: If our system detects a final peer-reviewed "version of record" (VoR) published in any journal, a link to that VoR will appear below. Readers are then encourage to cite the VoR instead of this preprint.

Settings: If you are the author, you can login and change the preprint display settings, but the preprint URL/DOI is supposed to be stable and citable, so it should not be removed once posted.

Submit: To post your own preprint, simply submit to any JMIR journal, and choose the appropriate settings to expose your submitted version as preprint.

Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.

Validation of algorithms to identify organ transplant recipients from the electronic health record: Cohort Study

  • Lee Wheless; 
  • Laura Baker; 
  • LaVar Edwards; 
  • Nimay Anand; 
  • Kelly Birdwell; 
  • Allison Hanlon; 
  • Mary-Margaret Chren; 



Studies involving organ transplant recipients (OTR) are often limited to the variables collected in the national Scientific Registry of Transplant Recipients database. The electronic health record (EHR) contains additional variables that can augment this data source if OTR can be identified accurately.


To develop methods to identify OTR from the EHR.


We used Vanderbilt’s de-identified version of its EHR database that contains nearly 3 million subjects to develop algorithms to identify organ transplant recipients. We identified all 19,821 individuals with at least one ICD or CPT code for organ transplantation. We performed chart review on 1,250 randomly-selected individuals to determine transplant status. We constructed multiple machine learning models to calculate positive predictive values and sensitivity for combinations of codes.


Of the 1,250 reviewed patient charts, 740 were transplant recipients, while 498 had no record of a transplant, and 12 were equivocal. Most patients with only one or two transplant codes did not have a transplant. The most common reasons for being labeled a non-transplant patient were a lack of data (n = 222, 44.2%), or the patient being evaluated for an organ transplant (n = 159, 31.7%). The most robust model was a random forest that identified organ transplant recipients with overall 97% PPV and 94% sensitivity.


Electronic health records (EHR) linked to biobanks are increasingly used to conduct large-scale studies, but have not been well-utilized in organ transplantation research. We present validated methods for identifying OTR from the EHR that will enable the use of the full spectrum of clinical data in transplant research. Using several different methods, we were able to identify transplant cases with high accuracy using ICD and CPT codes.


Please cite as:

Wheless L, Baker L, Edwards L, Anand N, Birdwell K, Hanlon A, Chren M

Validation of algorithms to identify organ transplant recipients from the electronic health record: Cohort Study

JMIR Preprints. 28/01/2020:18001

DOI: 10.2196/preprints.18001


Download PDF

Request queued. Please wait while the file is being generated. It may take some time.

© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.