Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Advertisement

Currently submitted to: Journal of Medical Internet Research

Date Submitted: Nov 14, 2019
Open Peer Review Period: Nov 14, 2019 - Jan 9, 2020
(closed for review but you can still tweet)

NOTE: This is an unreviewed Preprint

Warning: This is a unreviewed preprint (What is a preprint?). Readers are warned that the document has not been peer-reviewed by expert/patient reviewers or an academic editor, may contain misleading claims, and is likely to undergo changes before final publication, if accepted, or may have been rejected/withdrawn (a note "no longer under consideration" will appear above).

Peer-review me: Readers with interest and expertise are encouraged to sign up as peer-reviewer, if the paper is within an open peer-review period (in this case, a "Peer-Review Me" button to sign up as reviewer is displayed above). All preprints currently open for review are listed here. Outside of the formal open peer-review period we encourage you to tweet about the preprint.

Citation: Please cite this preprint only for review purposes or for grant applications and CVs (if you are the author).

Final version: If our system detects a final peer-reviewed "version of record" (VoR) published in any journal, a link to that VoR will appear below. Readers are then encourage to cite the VoR instead of this preprint.

Settings: If you are the author, you can login and change the preprint display settings, but the preprint URL/DOI is supposed to be stable and citable, so it should not be removed once posted.

Submit: To post your own preprint, simply submit to any JMIR journal, and choose the appropriate settings to expose your submitted version as preprint.

Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.

A Sentiment Analysis of User Reviews of Depression Apps Features

  • Julien Meyer; 

ABSTRACT

Background:

Mhealth apps are promising to overcome barriers to access mental health care. Adoption and continuous use, however, depends on users’ decisions. App reviews both reflect and influence users’ attitude and experience towards apps and influence their propensity to use mhealth apps.

Objective:

We investigate user app reviews on specific features in depression apps (psychoeducation, medical assessment, therapeutic treatment, supportive resources and entertainment).

Methods:

We extracted 3,261 user reviews of depression apps, isolated reviews associated with single feature apps. We then analyzed reviews using LIWC, a natural language analytical tool and contrasted language patterns associated with different features.

Results:

Medical Assessment features stand out for the strong negative emotions and negative ratings they generate, as users receive potentially disturbing feedback on their condition. Symptom Management and Entertainment features generate less negative emotions and anxiety. Therapeutic Treatment features also generate more positive and fewer negative emotions, even though user experience is less authentic (i.e., reflecting a personal experience).

Conclusions:

Developers should be cautious in their choice of features when they are targeting potentially vulnerable users. Medical assessment feedback being riskier while offering information, contacts or even games may be a safer starting point to engage people with depression. App features emerged as a key dimension to consider when investigating user experience with mhealth apps. Methodologically, app reviews can be leveraged to investigate specific app features at the level of a family of apps. Specifically, Natural Language Analysis proved to be a responsive tool to investigate behaviors related to a quickly changing app environment.


 Citation

Please cite as:

Meyer J

A Sentiment Analysis of User Reviews of Depression Apps Features

JMIR Preprints. 14/11/2019:17062

DOI: 10.2196/preprints.17062

URL: https://preprints.jmir.org/preprint/17062

Download PDF


Request queued. Please wait while the file is being generated. It may take some time.

© The authors. All rights reserved. This is a privileged document currently under peer-review/community review (or an accepted/rejected manuscript). Authors have provided JMIR Publications with an exclusive license to publish this preprint on it's website for review and ahead-of-print citation purposes only. While the final peer-reviewed paper may be licensed under a cc-by license on publication, at this stage authors and publisher expressively prohibit redistribution of this draft paper other than for review purposes.