Social Media Interventions to Promote HIV Testing, Linkage, Adherence, and Retention: Systematic Review and Meta-Analysis

Bolin Cao1,2,3, PhD; Somya Gupta4, MA; Jiangtao Wang5, BA; Lisa B Hightow-Weidman6, MD; Kathryn E Muessig7, PhD; Weiming Tang2,3,6, PhD; Stephen Pan2,3, PhD; Razia Pendse4, MD; Joseph D Tucker2,3,6, MD, PhD

1School of Media and Communication, Shenzhen University, Shenzhen, China
2University of North Carolina Project-China, Guangzhou, China
3SESH Global, Guangzhou, China
4World Health Organization South-East Asia Region, New Delhi, India
5School of Journalism and Communication, Jinan University, Guangzhou, China
6School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
7Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Corresponding Author:
Bolin Cao, PhD
School of Media and Communication
Shenzhen University
No. 3688, Nanhai Avenue, Nanshan District
Shenzhen, 518000
China
Phone: 86 13247393943
Fax: 86 0755 26535374
Email: caobolin@szu.edu.cn

Abstract

Background: Social media is increasingly used to deliver HIV interventions for key populations worldwide. However, little is known about the specific uses and effects of social media on human immunodeficiency virus (HIV) interventions.

Objective: This systematic review examines the effectiveness of social media interventions to promote HIV testing, linkage, adherence, and retention among key populations.

Methods: We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and Cochrane guidelines for this review and registered it on the International Prospective Register of Systematic Reviews, PROSPERO. We systematically searched six databases and three conference websites using search terms related to HIV, social media, and key populations. We included studies where (1) the intervention was created or implemented on social media platforms, (2) study population included men who have sex with men (MSM), transgender individuals, people who inject drugs (PWID), and/or sex workers, and (3) outcomes included promoting HIV testing, linkage, adherence, and/or retention. Meta-analyses were conducted by Review Manager, version 5.3. Pooled relative risk (RR) and 95% confidence intervals were calculated by random-effects models.

Results: Among 981 manuscripts identified, 26 studies met the inclusion criteria. We found 18 studies from high-income countries, 8 in middle-income countries, and 0 in low-income countries. Eight were randomized controlled trials, and 18 were observational studies. All studies (n=26) included MSM; five studies also included transgender individuals. The focus of 21 studies was HIV testing, four on HIV testing and linkage to care, and one on antiretroviral therapy adherence. Social media interventions were used to do the following: build online interactive communities to encourage HIV testing/adherence (10 studies), provide HIV testing services (9 studies), disseminate HIV information (9 studies), and develop intervention materials (1 study). Of the studies providing HIV self-testing, 16% of participants requested HIV testing kits from social media platforms. Existing social media platforms such as Facebook (n=15) and the gay dating app Grindr (n=10) were used most frequently. Data from four studies show that HIV testing uptake increased after social media interventions (n=1283, RR 1.50, 95% CI 1.28-1.76). In the studies where social media interventions were participatory, HIV testing uptake was higher in the intervention arm than the comparison arm (n=1023, RR 1.64, 95% CI 1.19-2.26).
Conclusions: Social media interventions are effective in promoting HIV testing among MSM in many settings. Social media interventions to improve HIV services beyond HIV testing in low- and middle-income countries and among other key populations need to be considered.

Trial Registration: International Prospective Register of Systematic Reviews (PROSPERO): CRD42016048073; http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42016048073 (Archived by WebCite at http://www.webcitation.org/6usLCJK3v)

KEYWORDS
social media; HIV; MSM; intervention; testing; adherence

Introduction

Since 2000, global efforts at human immunodeficiency virus (HIV) control have had significant effects. Acquired immune deficiency syndrome (AIDS)-related deaths have been reduced [1], and 19.5 million people are accessing antiretroviral therapy (ART) [2]. To achieve the end of the AIDS epidemic by 2030, 90% of all people living with HIV (PLWH) should know their HIV status, 90% of all people with diagnosed HIV infections should receive ART, and 90% of all people receiving ART should have viral suppression by 2020 [3]. However, in 2016, only 70% of PLWH globally had been diagnosed, 53% were receiving ART, and 44% had achieved viral suppression [4]. Improved efforts are needed to reach PLWH with a comprehensive package of HIV interventions, including HIV testing, linkage to care, ART, and retention. More programs are needed for key populations who are disproportionately affected by HIV and who have difficulty accessing services across the HIV care continuum [5]. The World Health Organization defines key populations as men who have sex with men (MSM), people who inject drugs (PWID), prisoners, sex workers, and transgender people [5,6]. Barriers to HIV interventions among key populations are complex and include persistent stigma and discrimination, punitive laws, and low risk perception [7-9]. Innovative approaches to reach these populations with equitable, accessible, and acceptable services will be essential to achieve 90-90-90 targets [3].

As social media has expanded globally, these platforms have been adopted to deliver HIV interventions, especially for key populations [10,11]. Social media is defined as an Internet-based platform that allows the creation and exchange of user-generated content, usually using either mobile or Web-based technologies [12]. Popular social media platforms, such as Facebook and YouTube, have over 1.5 billion monthly active users as of June 2017 [13]. Social media possesses the characteristics of interactivity, allows users to generate content [14], and attracts high user engagement [15]. Specifically, social media can enable convenient access, at any time and place, to information and services on stigmatized diseases such as HIV. In addition, social media can be used to form online communities to seek social support, which is known to improve treatment adherence and uptake of HIV services [16].

Systematic reviews have been conducted recently on the relationship between social media and HIV outcomes [10,11,17,18]. These studies generally define social media broadly (eg, to include eHealth and mHealth interventions) or examine usage of social media for a variety of purposes, including recruitment, surveillance, communication, and HIV prevention and treatment. These studies have not focused on social media interventions among key populations [5,6]. Key populations are of special importance because they influence epidemic dynamics and likely have a disproportionate influence on the effectiveness of the response to HIV [5]. To address these gaps in a rapidly growing field, this systematic review and meta-analysis looks at the effectiveness of social media interventions in promoting HIV testing, linkage to care, adherence to treatment, and retention along the HIV care continuum among key populations.

Methods

Conduct of Systematic Review

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [19]. In August 2016, the following databases were systematically searched without restriction on publication date: PubMed, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Scopus, and Sociological Abstracts. Three conference databases (Conference on Retroviruses and Opportunistic Infections; International AIDS Society Conference on HIV Science, and Youth+Tech+Health Conference) were also searched for abstracts for 2015 and 2016.

Search Strategy and Selection Criteria

The search strategy was designed with a librarian to identify studies regarding social media interventions to promote HIV testing, linkage, adherence, and retention among key populations (Multimedia Appendix 1). It was developed based on key terms, medical subject headings (MeSH) terms, synonyms, and subject headings related to three groups: (1) HIV, (2) social media or social media category or social media platform, including the most popular social networks (websites and apps) and top gay dating apps worldwide selected on the basis of their popularity and number of active users [20-22], and (3) key populations, including MSM, PWID, sex workers, and transgender persons.

Following the PRISMA guidelines [19], key study characteristics such as population, intervention, and outcomes defined the eligibility criteria. In particular, studies were included when (1) study population included key populations such as MSM, PWID, sex workers, and transgender individuals, (2) the intervention was created or implemented on at least one social media...
platform (existing platform or new platform with social networking components), and (3) outcomes included promoting HIV testing, linkage to care and treatment, adherence to ART, or retention. The inclusion criterion did not have any restrictions on geography or setting, except the language of publication as English. Studies without a comparator arm were also included. Studies in which social media were used for marketing/advertising, surveillance, recruitment, or data collection purposes only were excluded. Commentory, protocol, featured article, published articles without full text or sufficient details on interventions or outcomes, and modeling studies were also excluded.

Two investigators independently reviewed all abstracts identified through searches and screened them for eligibility. The full texts of the abstracts that met the eligibility criteria were then reviewed to confirm inclusion in the analysis. Disagreements were resolved through discussion with a third reviewer.

Data Extraction

Data extraction for the included studies was completed using a standardized extraction form in Microsoft Excel that included the following information: first author, study design (randomized controlled trial [RCT] or observational study), study date, study location, sample size, target population (MSM, PWID, transgender individuals, and/or sex worker), intervention dates/duration, social media platforms, the role of social media, the reach of social media intervention, whether there were interactions in-person or offline events, step in the HIV cascade, and study outcomes. The “role of social media” was categorized into (1) social media used to develop intervention materials for promoting HIV services, (2) social media used to establish virtual peer-mentored or online communities that promote HIV interventions, (3) social media as a platform to offer HIV-related services, such as HIV self-testing kits order and request, and (4) social media as a platform to disseminate HIV-related information [23]. Among various social media interventions, those who used interactive characteristics, tailored contents, or peer influence of social media were considered as participatory social media interventions. For studies with a comparator arm, data were abstracted on the type of interventions, participants, and outcomes for both the intervention and the comparator arm.

Quality Assessment

Two reviewers assessed the quality of the included studies using the checklist tool in Sanderson et al [24], and a third reviewer collated the results. For each study, the following six domains were used to assess risk of bias: (1) methods for selecting study participants, (2) methods for measuring exposure and outcome variables, (3) design-specific source of bias, (4) method of control confounding, (5) statistical methods, and (6) other biases (including conflict of interest and disclosure of funding sources). The Cochrane Collaboration’s recommendations [25] were used to categorize each of the six domains as “low risk of bias” (“+”) or “high risk of bias” (“−”).

Statistical Analysis

For RCTs meeting the inclusion criteria, pooled relative risks (RR) were used to compare the participants in the intervention and the comparator arm with respect to HIV testing rates among total participants. Pooled RR were also used to compare HIV testing outcomes at baseline and post social media interventions. Data from studies on HIV self-sampling were pooled to summarize (1) the proportion of total participants requesting HIV self-sampling services, (2) the proportion of participants requesting HIV self-sampling who returned their test kits, and (3) HIV positivity rates. Meta-analyses were conducted by Review Manager, version 5.3. Pooled RR and 95% confidence intervals (CI) were calculated using random-effects models.

Results

Study Characteristics

Of the 981 articles and abstracts, 26 studies met our inclusion criteria [26-51] (Figure 1). Of the 26 studies, eight were RCTs [28,33,41,42,46,47,49,50] and 18 were observational studies [26,27,29,32,34-40,43-45,48,51] (Table 1). These studies were implemented in 10 countries from 2007-2015 and published from 2011-2016. In total, 18 studies were from four high-income countries as defined by the World Bank [28,29,31-38,40,42-45,47,48,50], 10 studies were from the United States [28,33-35,38,42,43,45,47,50], five from the United Kingdom [29,31,32,36,48], two each from Australia [40,44], China [46,51], and Thailand [26,27], and one each from Taiwan [37], India [41], Peru [49], Mexico [30], and Guatemala [39]. The reach of social media interventions varied from 55 to over 17,000 individuals.

Key Populations

MSM were the primary population included in the reviewed social media interventions. All of the included studies contained MSM populations, and five also covered transgender individuals [26,27,35,42,46]. In three studies, MSM with the following specific characteristics were included: young MSM [28], young black MSM [47], and MSM living with HIV [33].

Social Media Platforms

Existing social and sexual networking sites and gay-specific websites/apps were used for interventions. Fifteen studies used Facebook [26-29,32,33,35-37,39,41,44,47,49,50] and 10 studies used Grindr, a social networking app catering to MSM [29,32,34-36,38-40,45,48]. Other generic social networking platforms included YouTube, Twitter, and QQ, and other social networking sites or apps catering to MSM included Gaydar, Jack’d, Scruff, A4A, and Radar. Six studies used both social and sexual networking sites as intervention platforms [29,32,35,36,39,51]. Five studies created their own social media platform to provide HIV services [26-28,30,33].

Role of Social Media

In one study, social media was used as a crowdsourcing tool to develop intervention materials (video) for promotion of HIV testing [46]. The study showed that the crowdsourced video arm (114/307, 37.1%) had similar results as the social marketing arm (111/317, 35.0%) in promoting HIV tests, but the cost of crowdsourced intervention was less than the social marketing intervention per first-time HIV test (US $131 vs US $238 per person) and per new HIV diagnosis (US$415 vs US $799 per person).
Ten studies reported using social media to establish virtual communities where HIV services (testing and adherence) were promoted [26,33,37,40,42,43,45,47,49,50]. While two studies built their own platforms to form interactive communities [26,33], the remaining studies established these communities on Facebook, popular gay dating apps or existing chat rooms [37,40,42,43,45,47,49,50]. Interventions provided in the communities included online HIV counseling, educating people about HIV and importance of HIV testing, referral for HIV testing, and answering questions related to HIV. HIV testing uptake was higher in virtual communities that emphasized peer-to-peer interaction among participants [37,49].

Social media also served as a platform for delivering services such as HIV self-testing kits, HIV self-sampling, or home-based HIV testing (9 studies) [27,29,31,32,34,36,44,48,50]. MSM were often recruited through a broadcast message as a pop-up or a personal message or promotional banner on social media, and the most popular platforms were Facebook and Grindr [29,32,34]. Finally, HIV-related information was disseminated using social media in nine studies [28-30,35,38,39,41,44,51]. Some studies tailored the content to be distributed on social media by user’s race/ethnicity and age based on quantitative data and evaluated through community advisory boards and youth advisory boards [28]. Other studies trained outreach health educators on using gay-specific apps to provide MSM with HIV education, counseling, and testing information [38,39].

In three studies, social media played more than one role [29,44,50]. In 14 studies, the online activities that were a part of the social media interventions were augmented with offline events or in-person interaction [26,27,29-32,35,36,38,39,44,48,49,51]. For example, during or post social media interventions, HIV testing were provided at clinics or home [27,36,38,51] and in studies on HIV test home-sampling, test results were conveyed to participants over the phone or via messages [29].
Table 1. Characteristics of the studies included in the systematic review (n=26).

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Study location</th>
<th>Sample size</th>
<th>Target population</th>
<th>Intervention period/duration</th>
<th>Social media platforms</th>
<th>Role of social media</th>
<th>Interaction in-person or offline</th>
<th>Step in the HIV cascade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand 2016 [27]</td>
<td>Observational</td>
<td>Thailand</td>
<td>97</td>
<td>MSM & transgender individuals</td>
<td>2015.12-2016.05</td>
<td>Facebook, Line, “Adam’s Love” online platform</td>
<td>Deliver kits</td>
<td>Yes</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Bauermeister 2015 [28]</td>
<td>RCT</td>
<td>US</td>
<td>130</td>
<td>Young MSM</td>
<td>30 days</td>
<td>Facebook; “Get connected” platform</td>
<td>Disseminate</td>
<td>No</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Brady 2014 [29]</td>
<td>Observational</td>
<td>UK</td>
<td>17,629</td>
<td>MSM</td>
<td>Phase 1: 2013.01-2013.09; Phase 2: 2013.11-2014.03</td>
<td>Grindr, Gaydar, Facebook</td>
<td>Deliver kits (blood) & disseminate</td>
<td>Yes</td>
<td>HIV testing and linkage to care</td>
</tr>
<tr>
<td>Buzdugan 2016 [30]</td>
<td>Observational</td>
<td>Mexico</td>
<td>61</td>
<td>MSM</td>
<td>5 weeks</td>
<td>Online game app</td>
<td>Disseminate</td>
<td>Yes</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Elliot 2012 [31]</td>
<td>Observational</td>
<td>UK</td>
<td>321</td>
<td>MSM</td>
<td>2011.11.07-2012.01.11</td>
<td>Gaydar</td>
<td>Deliver kits</td>
<td>Yes</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Elliot 2016 [32]</td>
<td>Observational</td>
<td>UK</td>
<td>17,361</td>
<td>MSM</td>
<td>2012-2014</td>
<td>Gaydar, Grindr, Facebook</td>
<td>Deliver kits (oral)</td>
<td>Yes</td>
<td>HIV testing and linkage to care</td>
</tr>
<tr>
<td>Horvath 2013 [33]</td>
<td>RCT</td>
<td>US</td>
<td>123</td>
<td>MSM living with HIV</td>
<td>2011.02-2011.04</td>
<td>Facebook; “Thrive with me” platform</td>
<td>Build community</td>
<td>No</td>
<td>ART adherence</td>
</tr>
<tr>
<td>Huang 2015 [34]</td>
<td>Observational</td>
<td>US</td>
<td>16,328 (112 in survey)</td>
<td>MSM</td>
<td>Phase 1: 2014.04.17-2014.05.29; Phase 2: 2014.10.13-2014.11.11</td>
<td>Grindr</td>
<td>Deliver kits (oral)</td>
<td>No</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Jones 2015 [36]</td>
<td>Observational</td>
<td>UK</td>
<td>305</td>
<td>MSM</td>
<td>2014.11.29-2014.11.30 (2 days)</td>
<td>Facebook, Grindr, Squirt</td>
<td>Deliver kits (blood)</td>
<td>Yes</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Ko 2013 [37]</td>
<td>Observational</td>
<td>Taiwan</td>
<td>1037</td>
<td>MSM</td>
<td>2011.04-2011.09</td>
<td>Facebook</td>
<td>Build community</td>
<td>No</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Lampkin 2016 [38]</td>
<td>Observational</td>
<td>US</td>
<td>903</td>
<td>MSM</td>
<td>2012.10-2013.03; 2013.10-2014.03</td>
<td>Grindr</td>
<td>Disseminate</td>
<td>Yes</td>
<td>HIV testing</td>
</tr>
<tr>
<td>Munro 2016 [40]</td>
<td>Observational</td>
<td>Australia</td>
<td>MSM</td>
<td>Not mentioned</td>
<td>Grindr</td>
<td>Build community</td>
<td>No</td>
<td>HIV testing</td>
<td></td>
</tr>
<tr>
<td>Patel 2016 [41]</td>
<td>RCT</td>
<td>India</td>
<td>244</td>
<td>MSM</td>
<td>2015.02-2015.05</td>
<td>Facebook, WhatsApp</td>
<td>Disseminate</td>
<td>No</td>
<td>HIV testing</td>
</tr>
</tbody>
</table>
Uptake of HIV Testing and HIV Home Sampling

We found 25 studies that used social media interventions to promote HIV testing [26-32,34-51] among MSM or MSM and transgender individuals, while one study used it for improving ART adherence [33]. Of these 25 studies, seven were RCTs [27,40,41,45,46,48,49] and the remaining 18 were observational studies [26,29-32,34-40,43-45,48,51]. Four studies were pooled to compare the rate of HIV testing at baseline and postintervention [37,41-43]. The meta-analysis showed that the HIV testing rate significantly increased after the social media interventions were provided (RR=1.50, 95% CI 1.28-1.76, I² 66%; Figure 2).

Data from five RCTs show that when social media interventions were participatory [28,42,46,49,50], HIV testing rates were significantly higher (RR 1.64, 95% CI 1.19-2.26, I² 75%; Figure 3) than in the comparative arm, where there were no social media interventions, or the social media interventions provided general health information or were not participatory. Of the seven RCTs, Patel et al [41] was excluded since both arms were interventional arms while Washington et al [47] was excluded from the analysis due to nonavailability of complete data. Similar to included studies, in Washington et al [47], those in the intervention arm (HIV testing video + chat) were seven times more likely to test for HIV than those in control group receiving standard HIV text information (study not included in pooled RR due to incomplete data).

Four studies in the United Kingdom and United States used social media to offer HIV self-testing services to MSM [29,31,32,50] (Tables 2,3, and 4). On average, 15.65% of the participants requested HIV testing kits (n=67,054; 95% CI 15.37-15.92), ranging from 15.50% to 36.36% (data from three studies) [30,31,49]. Nearly 57% of the participants who

<table>
<thead>
<tr>
<th>Study</th>
<th>Study design</th>
<th>Sample size</th>
<th>Social media platforms</th>
<th>Intervention period/duration</th>
<th>Role of social media</th>
<th>Interaction in-person or offline</th>
<th>Step in the HIV cascade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodes 2016 [42]</td>
<td>RCT</td>
<td>US</td>
<td>1292</td>
<td>MSM & transgender individuals</td>
<td>2013.07-2014.06</td>
<td>Build community</td>
<td>No</td>
</tr>
<tr>
<td>Roberts 2015 [44]</td>
<td>Observational</td>
<td>Australia</td>
<td>503</td>
<td>MSM</td>
<td>2013.11 & 2014.07</td>
<td>Deliver kits & disseminate</td>
<td>Yes</td>
</tr>
<tr>
<td>Sun 2015 [45]</td>
<td>Observational</td>
<td>US</td>
<td>2709</td>
<td>MSM</td>
<td>2013.08-2014.02</td>
<td>Build community</td>
<td>No</td>
</tr>
<tr>
<td>Tang 2016 [46]</td>
<td>RCT</td>
<td>China</td>
<td>721</td>
<td>MSM & transgender individuals</td>
<td>2014.09</td>
<td>MSM dating websites</td>
<td>Develop materials</td>
</tr>
<tr>
<td>Washington 2016 [47]</td>
<td>RCT</td>
<td>US</td>
<td>142</td>
<td>Young black MSM</td>
<td>Not mentioned</td>
<td>Facebook</td>
<td>Build community</td>
</tr>
<tr>
<td>West 2015 [48]</td>
<td>Observational</td>
<td>UK</td>
<td>55</td>
<td>MSM</td>
<td>2014.11 (5 days)</td>
<td>Grindr</td>
<td>Deliver kits</td>
</tr>
<tr>
<td>Young 2015 [49]</td>
<td>RCT</td>
<td>Peru</td>
<td>556</td>
<td>MSM</td>
<td>Phase 1: 2012.03.19-2012.06.11; Phase 2: 2012.09.26-2012.12.19</td>
<td>Facebook</td>
<td>Build community</td>
</tr>
<tr>
<td>Young 2013 [50]</td>
<td>RCT</td>
<td>US</td>
<td>112</td>
<td>MSM</td>
<td>2010.09-2011.01</td>
<td>Facebook</td>
<td>Build community & deliver kits</td>
</tr>
<tr>
<td>Zou 2013 [51]</td>
<td>Observational</td>
<td>China</td>
<td>429</td>
<td>MSM</td>
<td>2007.06-2007.08</td>
<td>Disseminate</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:

a “Build community” is when social media is used to establish virtual peer-mentored or online communities that promote HIV interventions.
b “Deliver kits” is when social media serves as a platform to deliver newly designed or extant evidence-based HIV intervention.
c “Disseminate” is when social media is used as a platform to disseminate HIV-related information.
d “Develop materials” is when social media is used to develop intervention materials for promoting HIV services.
requested test kits returned them (n=24,703; 95% CI 55.92-57.16). On average, the HIV positivity rate was 1.51% among those who received results (n=13,956; 95% CI 1.32-1.73) (data from three studies [29,31,32,34]).

Quality Assessment

There was a high risk of bias in methods for selecting study participants in 15 studies [27,29-32,34-36,38-40,42-44,48] and in measuring exposure and outcome bias in 13 studies [26,29,31,34-36,38-40,44,45,48,51]. Design-specific source of bias was present in 10 studies [27,28,30,36,41,45,46,49,50]. Concerns regarding control confounding bias were in 14 studies [26,29-32,34,35,37,40,44,45,48,51] and concerns of statistical methods in 15 studies [26,29-32,34-36,38-40,44,48,49,51] (Multimedia Appendix 2). Only two studies had low risk of bias in all the 6 dimensions [33,47]. See Multimedia Appendix 3 for results of the included studies.

Figure 2. Comparison between studies with baseline and postintervention data on HIV testing (n=4).

Table 2. Studies that use social media to provide HIV self-testing services (n=3): Request for HIV test kits.

<table>
<thead>
<tr>
<th>Study</th>
<th>Total participants/webpage views</th>
<th>Request testing kit</th>
<th>Request percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliot 2012</td>
<td>363</td>
<td>132</td>
<td>36.36 (31.58-41.43)</td>
</tr>
<tr>
<td>Elliot 2016</td>
<td>66,579</td>
<td>10,323</td>
<td>15.50 (15.23-15.78)</td>
</tr>
<tr>
<td>Young 2013</td>
<td>112</td>
<td>36</td>
<td>32.14 (24.21-41.26)</td>
</tr>
<tr>
<td>Total</td>
<td>67,054</td>
<td>10,491</td>
<td>15.65 (15.37-15.92)</td>
</tr>
</tbody>
</table>

Table 3. Studies that use social media to provide HIV self-testing services (n=4): Return rate of test kits.

<table>
<thead>
<tr>
<th>Study</th>
<th>Request for testing kit</th>
<th>Returned testing kit</th>
<th>Return percentage (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brady 2014</td>
<td>14,212</td>
<td>8,187</td>
<td>57.61 (56.79-58.42)</td>
</tr>
<tr>
<td>Elliot 2012</td>
<td>363</td>
<td>132</td>
<td>36.36 (31.58-41.43)</td>
</tr>
<tr>
<td>Elliot 2016</td>
<td>10,323</td>
<td>5696</td>
<td>55.18 (54.22-56.13)</td>
</tr>
<tr>
<td>Young 2013</td>
<td>36</td>
<td>11</td>
<td>30.56 (18.00-46.86)</td>
</tr>
<tr>
<td>Total</td>
<td>24,703</td>
<td>13,967</td>
<td>56.54 (55.92-57.16)</td>
</tr>
</tbody>
</table>

Table 4. Studies that use social media to provide HIV self-testing services (n=4): HIV positivity rate.

<table>
<thead>
<tr>
<th>Study</th>
<th>Total participants tested</th>
<th>HIV positive</th>
<th>Positive rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brady 2014</td>
<td>8,187</td>
<td>111</td>
<td>1.36 (1.13-1.63)</td>
</tr>
<tr>
<td>Elliot 2012</td>
<td>73</td>
<td>4</td>
<td>5.48 (2.15-13.26)</td>
</tr>
<tr>
<td>Elliot 2016</td>
<td>5696</td>
<td>96</td>
<td>1.69 (1.38-2.05)</td>
</tr>
<tr>
<td>Total</td>
<td>13,956</td>
<td>211</td>
<td>1.51 (1.32-1.73)</td>
</tr>
</tbody>
</table>
Discussion

Principal Findings

Social media have played varied roles and have been used in multiple settings to promote public health interventions. For example, social media was found to be effective in promoting physical activity [52] and smoking cessation [53]. Previous reviews have also found that social media interventions can improve HIV-related outcomes such as promoting HIV testing and linkage to care [10,11,17,18]. This systematic review shows that social media interventions are being used to promote HIV testing among MSM and transgender populations. In the studies included, HIV testing uptake among this key population group increased after implementation of social media interventions. Also, HIV testing uptake was particularly higher when the social media interventions were participatory and peer-driven. These findings are consistent with other studies [54,55] and support implementation of social media interventions that reach MSM populations and promote MSM participation.

HIV testing is the main focus of social media interventions along the HIV care continuum and is critical for achieving the first Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 target [3]. Four studies found that HIV self-testing kits distributed through social media led to large numbers of requests for and return of test kits. World Health Organization guidelines strongly recommend HIV self-testing as an additional approach to HIV testing services [56]. One study on HIV self-testing included in this review concludes that providing self-testing through social media is acceptable and cost-effective [34]. Cost per person tested was US $39 and US $26 of this cost was attributed to test kits [57]. This is comparable to other research that found self-testing (US $9.23) costs lower than facility-based testing (US $11.84) in Malawi [58]. The current studies that use social media to reach hard-to-reach populations and offer HIV self-sampling or self-testing services were implemented in high-income countries where social media penetration rates are high. More usability research on HIV self-testing using social media is needed in low- and middle-income countries. Meanwhile, all included articles reported using social media to promote HIV testing, except that one study aimed to enhance ART adherence [33]. In addition to promoting HIV testing, future research should explore how social media can be leveraged to promote other HIV care services.

Social media interventions that were participatory and peer-led resulted in higher HIV testing rates compared with those that did not include interactive features and peer-leaders. Thir, some studies used Facebook or one of the globally or nationally popular gay dating apps. Existing platforms may be useful for HIV interventions as they often have wide reach, high user engagement and retention, and attract specific key populations. These findings are consistent with other studies [54,55] and support implementation of social media interventions that能达到 MSM populations and promote MSM participation.

Am I right?
one-way monitoring of patients instead of bidirectional interactions.

This systematic review also has its own limitations. First, it was restricted to English language publications and was not able to cover studies in other languages. However, an empirical analysis found that this was not associated with bias [70]. Second, due to the heterogeneity of intervention types and measures in outcomes, we had difficulties pooling certain data. Some pooled results were largely driven by a few studies. This meta-analysis was not able to compare effects of social media intervention on MSM versus transgender individuals and through standalone platform versus existing platforms. Last, currently many studies on this topic are underway, so the state-of-the-science will continue to grow rapidly over the next few years.

Future Studies

This systematic review shows the effectiveness of using social media interventions to improve HIV testing among MSM population and has implications for both future research and public policy. Gaps should be filled on using social media to promote HIV services beyond HIV testing and among key populations beyond MSM. Moreover, how to maximize the use of social media to promote HIV service needs further exploration. In addition, given that social media interventions have been found to be effective, there is an opportunity for national programs to leverage social media to support scale-up of such interventions. In particular, low- and middle-income countries, where mobile usage is rising, seem to have relatively few social media interventions.

Conclusion

A total of 26 articles were identified in this systematic review to examine the role of rapidly expanding social media in improving access to HIV-related interventions and its effect in promoting HIV services among key populations. Social media can contribute to creating innovative intervention programs, disseminating intervention information, building virtual communities, and especially promoting HIV self-testing and self-sampling. Social media interventions were effective in increasing HIV testing rates, especially in high-income countries, aimed at MSM. To achieve the goal of 90-90-90 by 2020 and ultimately end AIDS by 2030, adapting these social media interventions in low- to middle-income countries and other key populations may be useful.

Acknowledgments

Support of this work was provided by the National Institutes of Health (National Institute of Allergy and Infectious Diseases 1R01AI114310); UNC-South China STD Research Training Centre (Fogarty International Centre 1D43TW009532); UNC Center for AIDS Research (National Institute of Allergy and Infectious Diseases 5P30AI050410); National Social Science Foundation of China (16CXW031); and the Bill & Melinda Gates Foundation to the MeSH Consortium (BMGF OPP1120138). This publication was also supported by Grant Number UL1TR001111 from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health.

We acknowledge Jennifer S Walker, UNC, a Chapel Hill librarian, for conducting the initial search for studies, and Gabriella Stein, undergraduate student, UNC, Chapel Hill, for her support at the early stage of this study.

The findings and conclusions in this study are those of the authors and do not necessarily represent the views of the World Health Organization.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Search terms.

[PDF File (Adobe PDF File), 24KB - jmir_v19i11e394_app1.pdf]

Multimedia Appendix 2

Quality assessment of the included studies.

[PDF File (Adobe PDF File), 34KB - jmir_v19i11e394_app2.pdf]

Multimedia Appendix 3

Results of included studies.

[PDF File (Adobe PDF File), 34KB - jmir_v19i11e394_app3.pdf]

References

2. UNAIDS. UNAIDS announces 18.2 million people on antiretroviral therapy, but warns that 15-24 years of age is a highly dangerous time for young women. URL: http://www.unaids.org/en/resources/presscentre/pressreleaseandstatementarchive/2016/november/20161121_PR_get-on-the-fast-track [accessed 2017-09-16] [WebCite Cache ID 6tx2aDxG]

13. Constine J. TechCrunch. Facebook now has 2 billion monthly users... and responsibility URL: https://techcrunch.com/2017/06/27/facebook-2-billion-users/ [accessed 2017-08-18] [WebCite Cache ID 6snaB5jF]

47. Washington T, Applewhite S. Using social media as a platform to direct young Black men who have sex with men to an intervention to increase HIV testing. 2016 Presented at: International AIDS Society AIDS Conference; 2016; Durban, South Africa.

Abbreviations

AIDS: acquired immune deficiency syndrome
ART: antiretroviral therapy
CINAHL: Cumulative Index to Nursing and Allied Health Literature
HIV: human immunodeficiency virus
MSM: men who have sex with men
PLWH: people living with HIV
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PWID: people who inject drugs
RCT: randomized controlled trial
RR: relative risk
UNAIDS: The Joint United Nations Programme on HIV/AIDS
UNC: University of North Carolina