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Abstract

Background: Implementation intentions are mental representations of simple plans to translate goal intentions into behavior
under specific conditions. Studies show implementation intentions can produce moderate to large improvements in behavioral
goal achievement. Human associative memory mechanisms have been implicated in the processes by which implementation
intentions produce effects. On the basis of the adaptive control of thought-rational (ACT-R) theory of cognition, we hypothesized
that the strength of implementation intention effect could be manipulated in predictable ways using reminders delivered by a
mobile health (mHealth) app.

Objective: The aim of this experiment was to manipulate the effects of implementation intentions on daily behavioral goal
success in ways predicted by the ACT-R theory concerning mHealth reminder scheduling.

Methods: An incomplete factorial design was used in this mHealth study. All participants were asked to choose a healthy
behavior goal associated with eat slowly, walking, or eating more vegetables and were asked to set implementation intentions.
N=64 adult participants were in the study for 28 days. Participants were stratified by self-efficacy and assigned to one of two
reminder conditions: reminders-presented versus reminders-absent. Self-efficacy and reminder conditions were crossed. Nested
within the reminders-presented condition was a crossing of frequency of reminders sent (high, low) by distribution of reminders
sent (distributed, massed). Participants in the low frequency condition got 7 reminders over 28 days; those in the high frequency
condition were sent 14. Participants in the distributed conditions were sent reminders at uniform intervals. Participants in the
massed distribution conditions were sent reminders in clusters.

Results: There was a significant overall effect of reminders on achieving a daily behavioral goal (coefficient=2.018, standard
error [SE]=0.572, odds ratio [OR]=7.52, 95% CI 0.9037-3.2594, P<.001). As predicted by ACT-R, using default theoretical
parameters, there was an interaction of reminder frequency by distribution on daily goal success (coefficient=0.7994, SE=0.2215,
OR=2.2242, 95% CI 0.3656-1.2341, P<.001). The total number of times a reminder was acknowledged as received by a participant
had a marginal effect on daily goal success (coefficient=0.0694, SE=0.0410, OR=1.0717, 95% CI −0.01116 to 0.1505, P=.09),
and the time since acknowledging receipt of a reminder was highly significant (coefficient=−0.0490, SE=0.0104, OR=0.9522,
95% CI −0.0700 to −0.2852], P<.001). A dual system ACT-R mathematical model was fit to individuals’ daily goal successes
and reminder acknowledgments: a goal-striving system dependent on declarative memory plus a habit-forming system that
acquires automatic procedures for performance of behavioral goals.

Conclusions: Computational cognitive theory such as ACT-R can be used to make precise quantitative predictions concerning
daily health behavior goal success in response to implementation intentions and the dosing schedules of reminders.

(J Med Internet Res 2017;19(11):e397) doi: 10.2196/jmir.8217
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Introduction

Background
Mobile health (mHealth) systems provide new opportunities to
provide precise individualized just-in-time interventions to
support behavior change [1]. mHealth provides a path for
translating evidence-based interventions (EBIs) onto delivery
systems that are replicable, scalable, and sustainable, with great
economies of scale for health care delivery [2]. mHealth also
provides new opportunities to study and apply psychological
theory in the ecology of everyday life, with a focus on
meaningful health-related behavior [3,4].

In this paper, we present an exploratory 28-day study in which
an mHealth app delivered interventions to support people in
pursuing self-selected healthy behavior change goals such as
eating more vegetables, eating more slowly, and increased
walking time per day. The interventions included asking people
to set implementation intentions [5]—an EBI that yields
medium-to-large improvements in behavior change
[6]—supplemented by reminders whose delivery schedule was
experimentally manipulated to explore cognitive mechanisms
that might amplify the effects of implementation intentions on
behavior change. The adaptive control of thought-rational
(ACT-R) theory of cognition [7] is used to develop an integrated
mechanistic account of the role of implementation intentions
in enhancing behavior change intentions and actions; how
reminders have time-varying strengthening effects on the impact
of implementation interventions; and how controlled,
deliberative, goal-striving behavior becomes automatic and
habitual. On the basis of this account, a predictive mathematical
model is fit to the data from the mHealth study.

A key driver of health care costs in the United States and other
developed nations are unhealthy but changeable behaviors such
as physical inactivity and eating too much, or too much of the
wrong things [8]. The working assumption for our own mHealth
research is that to master the complex fabric of a new healthy
lifestyle, one must master and weave together a new set of
healthy habits that override the old unhealthy habits. mHealth
platforms are proposed as systems that can expand and intensify
psychosocial and health behavior interventions beyond clinical
settings into the ecology of everyday life [9] to support the
formation and maintenance of desirable healthy habits.

The study and model presented in this paper are part of a larger
project (called Fittle+), with several aims. First, the project
involves the iterative development of an integrated pervasive
computing platform for delivering and testing multiple EBIs.
Second, the Fittle+ project explores how specific EBIs in the
literature—such as guided enacted mastery [10] and
implementation intentions—can be translated to mHealth
delivery. Third, the project pursues the development of an
integrated psychological model of behavior change that
encompasses multiple mechanisms and addresses the dynamic
effects of the EBIs and other fine-grained mHealth interventions
such as reminders.

In the rest of this introduction, we present:

• A summary of the theory of planned behavior (TPB).
• A review of implementation intentions as an EBI and the

hypothesized underlying cognitive mechanisms of action
for implementation intentions.

• A theoretical framework for long-term behavior change
based on recent cognitive neuroscience that proposes dual
systems: A system of mechanisms that supports volitional
goal-striving and a system that supports habit formation
and execution.

• ACT-R as a mechanistic and predictive dual-system theory
of goal-striving and habit formation.

• ACT-R predictions regarding the effects of different
reminder schedules on the strength of memory for
implementation intentions.

• A dynamical mathematical model based on ACT-R that
will be fit to individuals’ daily data over the course of the
28-day mHealth behavior-change study. The model
addresses effects of implementation intentions, reminder
schedules, and habit formation.

Theory of Planned Behavior and Self-efficacy
The path to healthy habits is not simple. Much of the focus in
behavior-change theory is on the factors that initiate and
strengthen the intentional goal to change and the factors that
strengthen the volitional and effortful striving to translate those
goal intentions into actual behavior [11,12]. Despite criticism
[13], a dominant theory of behavior change is the TPB [14].
The TPB proposes that volitional behavior change is a function
of the goal intention to perform the behavior and perceived
behavioral control. The goal intention is in turn a function of
expectancy-value beliefs and attitudes. PBC is synonymous
with the concept of self-efficacy in social cognitive theory
[15,16] and predicts that the perception of the ease or difficulty
of a particular intended behavior facilitates or impedes the
intention to perform the behavior.

Implementation Intentions
Goal intentions are hypothesized to be mental representations
of desired behavior and end states, which are to be distinguished
from implementation intentions that are mental representations
of simple plans to translate goal intentions into behavior under
specific conditions [5,17]. Interventions designed to foster the
setting of implementation intentions typically ask people to
specify when, where, how, and (sometimes) with whom to act
on a goal intention by using if-then statements of the form: “If
I encounter situation S then I will initiate action A.” It is argued
[18] that one reason to focus intervention efforts on
implementation intentions rather than goal intentions is that
medium-to-large changes in commitment to goal intentions
(d=0.66) only lead to small-to-medium changes in behavior
(d=0.33) [19], but implementation intentions have
medium-to-large effects on goal attainment (d=0.65) [6].

Wieber et al [18] review the experimental literature and studies
of physiological correlates to bolster the hypothesis that two
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processes are involved in the effectiveness of implementation
intentions: (1) the mental representation of situations in which
the intended behavior is to take place becomes more accessible
and activates the goal intention and (2) a strong associative link
between a mental representation of the situation and intended
behavioral action effects a heightened readiness to perform the
action and the action takes less effort.

Previous research has manipulated the situation-action
associative strength of implementation intentions and their
effects on behavior using priming [20]. This implicates
declarative memory processes [7,21] in mediating the effects
of implementation intentions. This would also suggest that other
ways of strengthening the declarative memory representations
of implementation intentions should enhance their
effectiveness—such as the explicit use of reminders to use
implementation intentions. Prestwitch et al [22] presented a
mHealth study that showed that SMS text message (short
message service, SMS) reminders of implementation intentions
promoted increased brisk walking but did not experimentally
explore the specific effects of reminders.

From Volitional Goal-Striving to Habits
Habits are only gradually learned through the association of
specific behaviors to triggering cues in the environment,
including physical settings and previous actions. More than a
hundred years of psychological research on habits suggests that
there are dual systems involved in habit acquisition and
strengthening [23-25]. There is (1) a deliberative or controlled
goal-striving process that motivates and guides the behavior in
the relevant contexts and, through repetition (2) a habit is formed
that is automatically performed without effortful, controlled
goal-striving. Well-practiced habits appear to be performed
automatically without mediating goals, motivation, or
deliberative thought (system 1) [26], but habit formation
typically depends on a long period of goal-mediated, consciously
controlled, exploration, repetition, and practice of behavior
(system 2) [26]. A simple example of this transition is
developing the habit of keeping a food diary [27]. At first, one
may need to set up reminders to go through the behaviors
involved in recording meals, but eventually, the behavior can
become triggered somewhat automatically at the end of every
meal.

Research [25] suggests that the neural circuitry directing
behavior undergoes changes as habits are acquired and
strengthened. As new behavior is attempted, explored, and
practiced, the prefrontal cortex communicates with the striatum
(basal ganglia), and the striatum communicates with the
midbrain and dopaminergic mechanisms aid learning and assign
value to goals. Continued practice of the behavior forms a
feedback loop between the sensorimotor cortex and the striatum,
creating behavioral routines that appear to be units residing in
the striatum. Habit learning is consistent with the learning of
other (procedural) cognitive skills [25,28].

The underlying neurological mechanisms of habit learning are
consistent with computational models of reinforcement learning
[25] such as temporal-difference models [29] and the
Rescorla-Wagner model [7,30,31]. Learning new sequences or
organizations of behavior involves learning through experience

the immediate value of actions that are currently available and
the estimated value of future actions and basing choices on those
learned value estimations.

An ACT-R Model of Implementation Intentions,
Reminders, and Habit Learning
In recent years, there has been push to develop rich, fine-grained,
dynamical theories that are up to the task of predicting mHealth
cause-effect relations and guiding the engineering of new
personalized interventions [32]. Computational predictive
models of self-efficacy (or PBC) have been developed based
on dynamical control principles [33] and on cognitive theory
[34]. In this paper, we extend the model of Pirolli [35] to provide
a computational account of the mechanisms involved in
intention-to-behavior processes [17] that are hypothesized to
be improved by implementation intentions, reminders, and habit
learning. The model presented here is based on the ACT-R
theory [7], including recent extensions [36,37].

As was summarized in Pirolli [35], ACT-R [7,21] is a unified
theory of how the structure and dynamics of the brain give rise
to the functioning of the mind. The ACT-R simulation
environment is a computational architecture that supports the
development of models.

Modules and Buffers
ACT-R is composed of modules, processing different kinds of
content, which are coordinated through a centralized production
module. Each module corresponds to a brain region. Each
module is assumed to access and deposit information into buffers
associated with the module, and the central production module
can only respond to the contents of the buffers. The declarative
memory module stores memories of the kind of knowledge and
experience that a person can attend to, reflect upon, and usually
articulate in some way (eg, by declaring it verbally or by
gesture). A consciously formulated implementation intention
that is later remembered and acted upon is an example of
something stored in the declarative memory module. The
production module stores the habits and skills we display in our
behavior without conscious awareness. The goal buffer stores
and retrieves information that represents the internal intention
of the system and provides local coherence to behavior. More
specifically, the modules and buffers relevant to this paper
include

• Goal buffer (dorsolateral prefrontal cortex), which keeps
track of active goals and internal state of the system.

• Production module (basal ganglia), which matches the
contents of other module buffers and coordinates their
activity. The production module stores production rules.
A production rule is a formal specification of the flow of
information from buffers in the cortex to the basal ganglia
and back again. As suggested by the literature review above,
the production module is where new habits are stored.
Productions have a utility property that is used to select the
single rule that is executed.

• Declarative module (temporal lobe; hippocampus) and
retrieval buffer associated with the retrieval of knowledge
and past experiences from long-term declarative memory.
The declarative module is where goal intentions are stored
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(before they become active goals in the goal buffer) and
where implementation intentions are stored.

Knowledge in the declarative module and goal buffer is
represented formally in terms of chunks [38,39]. Chunks have
activation levels that determine the probability and time course
of chunk retrieval into a buffer. Production utilities and chunk
activations are real-valued quantities produced by subsymbolic
mechanisms in ACT-R. These subsymbolic mechanisms reflect
neural-like processes that determine the time course and
probability of cognitive activity and behavioral performance.
The dynamics of declarative memory retrieval and production
selection are determined by these subsymbolic mechanisms.

Key Components of the ACT-R Model of Intentions,
Reminders, and Habits
Pirolli [35] presented an ACT-R model motivated by Tobias
[40] that is modified slightly here to suit the current experiment.
The model includes the following components:

• Goal intentions: a goal-like representation that is stored in
declarative memory as a kind of prospective memory
[41,42] to be turned into an active goal, in the goal buffer,
in response to the right context

• Implementation intentions: plan-like representations that
are also stored in declarative memory to be turned into
concrete behaviors by production rules

• Reminders: SMS text messages that cue the recall of
implementation intentions and thereby, increase the
activation of implementation intentions through learning
mechanisms so that they are more likely to be retrieved in
the right context in the future

• Habit compilation (ie, production compilation): repeated
execution of complex sequences of cognitive and behavioral
steps (multiple production rules, multiple memory

retrievals) produce new, simpler production rules that
require less cognitive effort the next time around

• Utility learning: new habits are rewarded and slowly come
to dominate over the old habits

Mechanisms Underlying the Dynamics of Reminders
and Memory
Figure 1 presents a subset of the ACT-R mechanisms relevant
to the current model. The first two equations in Figure 1 define
how the level of activation of chunks in declarative memory
relates to the probability of their retrieval at any given time.
The third equation for base-level learning defines how activation
levels are increased by repeated experiences (practice) or decay
with time (forgetting). These activation and base-level learning
mechanisms are crucial to the ACT-R model of implementation
intentions and the effects of reminders. Reminders for
implementation intentions will increase their activation in
declarative memory, but activation will decay as time goes by
since those reminders were attended.

We hypothesize that the base-level strength of implementation
intentions in declarative memory will be associated with
improved success in achieving behavior-change goals. The
dynamics of base-level strength will be related to frequency and
timing of reminders, as well as the frequency and timing of
actual use of the implementation intentions in performing
behavior.

The base-level learning mechanisms defined in Figure 1 propose
that each time an implementation intention is formulated,
reminded, or put into practice, it receives an increment of
activation (a practice effect). However, each increment of
activation decays as a power function of time (the forgetting
effect).

Figure 1. Some key adaptive control of thought-rational (ACT-R) subsymbolic mechanisms.
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The rate of decay of each increment of activation depends on
the strength of activation at the time of the reminding or practice:
at longer intervals between remindings or practice, the activation
levels are lower, and subsequent forgetting occurs less quickly
(the spacing effect). When reminding or practice is spaced
closely, the forgetting occurs more quickly.

Habit Learning Mechanisms
The last two equations in Figure 1 define utility learning and
the relation of utility to the probabilistic choice of production
rules to execute. These utility mechanisms are crucial to the
ACT-R model of habit formation.

Also important in the ACT-R model of habit formation is the
mechanism of production compilation [7,43,44] by which new
production rules are acquired. A new production rule is
generated every time two production rules are executed in
sequence. The mechanism works to create new rules that
eliminate internal cognitive processing, such as the need to
retrieve information from the declarative module or set and
maintain sequences of goals. Production compilation is viewed
as the mechanism underlying the acquisition of new habits.
Utility learning is a variety of reinforcement learning similar
to temporal-difference learning [29] and Rescorla-Wagner
learning [31]. According to the utility learning equation, the
utility of a new production rule (habit) is gradually adjusted
until it matches the average reward for using the production.

ACT-R Predictions About Reminding Schedules and
the Memory Strength of Implementation Intentions
Figure 2 presents the reminding schedules used in our 28-day
study. The experiment manipulated the total frequency of
reminders (7 or 14 reminders over 28 days) and the distribution
of presentation (massed or distributed). Each vertical bar in
Figure 2 indicates the day on which a reminder was sent to our
participants. In the massed conditions, some reminders occur
with less temporal spacing. The base-level learning parameters
used to plot the base-level activation in Figure 3 are from Pavlik
and Anderson [37], and they illustrate the practice, forgetting,
and spacing phenomena: reminders are expected to boost up
the base-level activation, but the activation decays without
further practice, and distributed reminders are forgotten less
quickly.

Each plot in Figure 3 also presents the predicted mean activation
level of the implementation intention over the full 28 days for
each condition (upper left corner of each plot). Note that at low
frequency of reminders, the mean activation level in the massed
condition is greater than that of the distributed condition, but
at high frequency, the mean activation of the distributed
condition is greater than the massed condition. Thus, there is a
predicted interaction of reminder distribution (massed,
distributed) by frequency (low, high) and specifically, the
average activation levels for the implementation interventions
are predicted to be high frequency-distributed > high
frequency-massed > low frequency-massed > low
frequency-distributed. Behavior-change data from the mHealth
experiment will be used to test for this predicted interaction and
the specific ordering of success rates predicted by the model.

Figure 2. Reminder schedules used in the experiment.
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Figure 3. Simulated base-level learning of implementation intentions as a function of different reminder schedules.

Figure 4. Probability tree for cognitive states and processes in the model.

A Dynamical Model of Reminding and Habit Learning
Effects for Each Individual
As discussed previously, theory suggests that behavior change
involves dual systems: a goal-striving system that is heavily
dependent on declarative memory and a habit-forming system
that acquires and reinforces more automatic procedures for
performance. Figure 4 captures the dual-system model that was
fit to the data from the mHealth experiment. The model
presented here is consistent with the ACT-R model presented

above but is also similar to that of Pavel et al [45]. It is a
dual-system model that includes (1) a habit or reinforcement
learning system and (2) a declarative memory system with
base-level learning of memory activation. The declarative
memory model includes the Pavlik and Anderson [37]
mechanisms to account for effects that may occur when
remindings happen at variable spacing, which were manipulated
in the experiment. If a reminder happens, there is an increase
in the activation of the intention memory. If a goal success
happens, there is habit reinforcement, as well as a strengthening
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of the activation of declarative memories for goal intentions
and implementation intention memories.

Figure 5 presents the details of the model in terms of 12
equations. On a given day, in the appropriate context for doing
their goal behavior, a participant may recall their goal intention
or not with probability Pr(G). If the goal intention is recalled,
there are two routes to successful behavior: the goal behavior
may be achieved through effortful goal striving with probability
Pr(S), or if a habit has formed, it can be achieved by the new
habit routines with probability Pr(H1). At first, goal-striving
will be more probable, and after many repetitions, the habitual
behavior will be more probable. After the habit is well practiced,
even if the goal intention is not explicitly recalled, it may be
executed with probability Pr(H2).

Altogether, the probability of participant success on a given day
will be given by equation 1 (Figure 5). We can rewrite this as
a dynamical equation dependent on day t as equation 2 (Figure
5). Where Success (t) is the probability of success of performing
the goal, G (t) is the probability of remembering the goal
intention, H1(t) is the probability of a habit routine given the
goal intention has been recalled, and H2(t) is the probability of
the habit given no goal intention recall.

The probability of recall based on activation level is given in
equation 3 (Figure 5), where AII is the base-level activation from
reminders, and AA is the base level activation from past
experiences of actually doing the behavior (declarative memory
of the experiences), and β0, β1, and β2, are scaling and slope
parameters to be estimated.

As shown in Figure 1, ACT-R chooses productions based on
the utility learned for those productions. The choice of
goal-striving production versus habit productions is given by
Equation 4 (Figure 5), where Uθ is a threshold utility that
essentially captures the other behaviors competing with (or
impeding) the choice of the goal behaviors. Us is the utility of
the goal-striving productions that we assume is also dependent
on the activation strength of the implementation intention in
memory as given in equation 5 (Figure 5).

The habits associated with the goal behavior are learned
according to the utility learning equation 6 (Figure 5), where R
is the reward value associated with successfully performing the
targeted goal behavior. The performance of a habit competing
with goal-striving is given by the probability H1(t) in equation
7 (Figure 5). In the case where the goal intention has not been
recalled, but there is a habit that is being learned, the habit
productions just compete with the background threshold, and
the probability of the habit is H2(t) in equation 8 (Figure 5).

What remains to be defined is the declarative memory model
that captures the base-level learning effects from the reminders
and the successful behavior experience. As presented in Figure
1, each time, ti, a reminder, or experience happens, there is an
increment of activation that decays as a power function with
decay parameter di. The total base-level activation is just the
log of the sum of all those decaying increments as given in
equation 9 (Figure 5). One complexity is that the decay
parameter on each activation increment for a reminder or
experience can vary as a function of the current level of
activation, as defined in equation 10 (Figure 5), where c and a
are scaling and slope parameters. This fits the observation that
forgetting is slower when interpractice time is longer (spaced).
So the base-level learning for the implementation intention, in
equation 11, is defined by the times at which the reminder

happened (r1
+, … rk

+), and the base-level activation because of
successful behaviors given in equation 12 is defined by the

times at which the experiences happened, (g1
+,…,gk

+).

Summary of Aims
A 28-day exploratory mHealth experiment was conducted to
investigate ACT-R predictions about the effects on achievement
of behavior-change goals of implementation intention reminders
and of prior goal achievement. The experiment uses an mHealth
app that engages users to select goals to do new healthy
behaviors (eg, eating more vegetables, eating more slowly, and
increased walking time per day) to be performed every day and
to set implementation intentions to do those behaviors.

The aims of this study were to

• Perform exploratory data analyses for signature phenomena
predicted by the ACT-R theory. Memory for
implementation intentions is predicted to (1) improve with
the cumulative frequency of reminders and cumulative
frequency of performance of the goal behaviors (practice
effects) and (2) diminish with the time since presentation
of past reminders and time since past goal performances
(forgetting effects).

• Test-specific ACT-R predictions about the effects of
reminder schedules on memory for implementation
intentions, as revealed in participants’ rates of daily
adherence to behavior-change goals (summarized in Figures
2 and 3)

• Model each individual’s daily goal achievement data using
a dynamical mathematical model based on ACT-R. The
ACT-R model captures the mechanisms underlying the role
of reminders in amplifying the effects of implementation
intentions during the volitional goal-striving phase of
behavior change, as well as the gradual learning of new
habits.
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Figure 5. The adaptive control of thought-rational (ACT-R) dual-system model.

Methods

We first present the mHealth experiment and then summarize
the analysis methods that were applied to explore the ACT-R
model of implementation intentions, remindings, and habit
formation.

Experiment

Design
An incomplete factorial design was used in this experiment (see
Table 1). All participants were asked to choose a healthy
behavior goal and to set implementation intentions. Participants
were stratified by self-efficacy: their confidence to complete the
selected behavior goal. Participants were assigned to one of two
reminder conditions: presented versus absent. Self-efficacy and

reminder conditions were crossed. Nested within the reminders
presented condition was a 2 X 2 crossing of frequency of
reminders sent (high, low) by distribution of reminders sent
(distributed, massed). Participants in the low frequency condition
were sent a total of 7 reminders, and participants in the high
frequency condition were sent 14 reminders. Participants in the
distributed conditions were presented reminders at uniform
intervals: high frequency distributed participants were sent
reminders on days 2, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and
28, whereas low frequency distributed participants were sent
reminders on days 4, 8, 12, 16, 20, 24, and 28. Participants in
the massed distribution conditions were sent reminders in
clusters (lower row of plots in Figure 2): high frequency massed
participants were sent reminders on days 3, 4, 7, 8, 11, 12, 15,
16, 19, 20, 23, 24, 27, and 28 and low frequency massed on
days 3, 4, 11, 12, 19, 20, 27, and 28. In total, there were 10
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conditions: 2 (self-efficacy) X 2 (frequency) X 2 (distribution)=8
in the reminder-present condition, plus 2 (self-efficacy) in the
reminder-absent condition.

Participants
N=64 participants were recruited using the email list of a large
university, Craigslist, and Nextdoor. Participants were paid US
$50 in gift cards for their participations. Participants ranged in
age from 25 to 71 years, with a median of 30 years. Internet
protocol addresses suggested that participants came from eight
different US states, and one came from India, with the majority
coming from California and Michigan. Participants were
randomly assigned to the 10 cells of the incomplete factorial
design, resulting in slightly unbalanced cells with 5 to 8
participants per cell (Table 1). Pooling across the cells in Table
1, there were N=34 participants in the low self-efficacy
conditions and N=30 in the high self-efficacy conditions.
Pooling across reminders conditions, there were N=51
participants in the reminders presented conditions and N=15 in
the reminders absent conditions. There were N=23 low
frequency and N=28 high frequency participants and N=26
distributed distribution and N=25 massed distribution
participants.

Materials
Four types of health behavior goals (habits) were developed by
the nutrition and exercise specialist on our team: eating slowly
(12 habits), walking (19 habits), food journaling (11 habits),
and eating vegetables (6 habits). N=1500 participants from
Mechanical Turk rated subsets of these habits on habit difficulty
and perceived self-efficacy. The difficulty question was “ how
difficult is it for you to complete this goal everyday for the next
7 days?: 1-10 scale,” and the self-efficacy question was “ how
confident are you that you can complete this goal everyday for
the next 7 days?: 0%-100% scale. ” Reported difficulty and
self-efficacy rating were highly negatively correlated. Food
journaling tasks did not show much variability in difficulty
ratings and were dropped from the study. For the remaining
three habits: eating slowly, walking, and eating vegetables, we
selected the three most difficult habits and the three easiest
habits. An example habit was “Stretch for 10 minutes and walk
for 30 minutes in the afternoon.” An example of an

implementation intention reminder for this habit was
“Remember to stretch for 10 minutes and walk for 30 minutes
in the afternoon—at in my neighborhood with a friend.” The
complete list of habits is in Multimedia Appendix 1.

PARC Coach
PARC Coach is a mobile app developed to study behavior
change interventions in an mHealth setting. It implements only
the most central features to reporting behavior and delivering
interventions. PARC Coach has a reporting home page on which
people report whether they have met their daily goal.
Informational pages were available for every behavioral goal.

Procedure
Upon creating an account and first time logging in, they were
asked to select a class of habit to pursue: eat slowly, walking,
or eating more vegetables. Upon habit selection, participants
were randomly assigned to either a high self-efficacy or low
self-efficacy goal for that habit class. Upon being assigned the
specific habit, participants were asked to rate their self-efficacy
for achieving the assigned goal with the question “how difficult
is it for you to complete this goal everyday for the next 7 days?:
1-10 scale.”

Self-reported daily goal achievement reports were collected in
the PARC Coach app. The app contains a reporting page in
which participants click a button to indicate whether they did
their goal behavior.

Participants were then asked to set an implementation intention
with the following components (possible responses in
parentheses): (1) Which part of day will you do practice this
habit? (morning, afternoon, evening) or which meal will you
like to try this at? (breakfast, lunch, or dinner), (2) Where will
you do this activity?, (3) Who will you do this activity with?,
and (d) When will you do this activity? (event time).

If participants were in a reminder condition, they were
additionally asked How long before the event would you like to
be reminded of your task? (reminder duration). In the reminder
condition, the participants’ selection of an event time and a
reminder duration were combined with the reminder schedule
to compute when to send the reminder.

Table 1. Number of participants assigned to cells of the incomplete factorial design.

Participants (n)DistributionFrequencyRemindersSelf-efficacy

6DistributedLowPresentedLow

6MassedLowPresentedLow

7DistributedHighPresentedLow

8MassedHighPresentedLow

7AbsentLow

6DistributedLowPresentedHigh

5MassedLowPresentedHigh

7DistributedHighPresentedHigh

6MassedHighPresentedHigh

6AbsentHigh
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Reminders were sent by SMS to the participants’mobile phone.
The content of the reminders was determined by the habit and
the participants’ implementation intentions. Participants were
expected to acknowledge reminders by clicking “OK.” The
reminder was canceled if it wasn’t acknowledged until the event
time. The sending of reminders and the acknowledgment of
their receipt was automatically logged by the PARC Coach app.

Analyses

Exploratory Data Analyses for Signature Memory
Phenomena
ACT-R predicts that the effects of reminders on the memory
activation levels of implementation intentions will exhibit
practice and forgetting effects. Memory activation is predicted
to increase with the frequency with which reminders are
processed (practice) and decrease as with decreases in the
recency since reminders were processed (forgetting). When a
reminder is sent to participants, there is a chance that they may
ignore the reminder. When participants acknowledged the
receipt of reminders, we assume that is an indicator that they
actually attended to and processed the reminder.

We performed a set of exploratory analyses on the basic
relationship of reminder schedules to achieving behavior-change
goals (adherence). For every participant, on every day, the
dependent variable of goal adherence was coded (success=1,
failure=0). For every participant, on every day, we also coded
how many times a reminder had been acknowledged as received
since the start of the experiment (frequency acknowledged) and
how many days since the last reminder had been acknowledged
(recency acknowledged); how many time a reminder has been
sent since the beginning of the experiment (frequency sent) and
how may days since the last reminder had been sent (recency
sent); and how many days adherence had been reported in the
past (frequency adherence) and how may days since the last
report of success (recency adherence).

We, for each type of input variable (reminder acknowledged,
reminder sent, past goal adherence) at every level of frequency
and recency, computed the mean probability of adherence
(ranging from 0-1) and computed simple linear regressions of
the form

Adherence ~ βF0+ βF1* Frequency,

and

Adherence ~ βR0+βR1* Recency,

and computed the goodness-of-fit R2 statistics. In addition, we
analyzed the contribution of self-efficacy and reminder
frequency and recency with a logistic regression:

logit(Adherence) ~ β0i + β0 + β1 S + β3 R

where S=self-efficacy (a categorical variable), F=frequency
acknowledged, R=recency acknowledged, and is a random
coefficient estimated for each participant i.

Analysis of Specific ACT-R Predictions About Reminder
Schedules
We performed a logistic regression analysis of goal adherence
data within the 2 (frequency) X 2 (distribution) factorial

conditions in which reminders were presented. This analysis
serves as a test for the specific pattern of a priori ACT-R
predictions about the effects of reminder schedules on memory
for implementation intentions. Those predictions are summarized
in Figures 2 and 3. Specifically, based on the mean base-level
activations, ACT-R predicts an interaction of frequency X
distribution with the average activation levels for the
implementation interventions predicted to be high
frequency-distributed > high frequency-massed > low
frequency-massed > low frequency-distributed.

Fit of the ACT-R Dual-System Mathematical Model to
Individual-Level Data
A fit of the ACT-R mathematical model (defined in equations
1-12) to the data for every individual and every day was obtained
by minimizing the Brier score between model-predicted
probability success and observed success using the R optimx
package using a quasi-Newton method called limited-memory
BFSG, which allows one to bound the parameter search (by
providing upper and lower boundaries).

Results

Signature Practice and Forgetting Phenomena Because
of Reminders and Performance
Practice and forgetting effects are key signatures of declarative
and procedural memory [46,47]: improvements generally accrue
with repeated practice or remindings and decay over time
without continued practice or reminding. Figure 6 demonstrates
that these signature phenomena are apparent in the success rates
of the participants. Each point in the plots is the mean observed
probability of participants reporting success at achieving a goal
on a given day as a function of different frequency and recency
factors. The top two plots present the probability of reported
success as a function of frequency and recency of past goal
success. The middle two plots present the observed probability
of success as a function of the frequency and recency of sent
reminders. The bottom two plots present the observed
probability of success as a function of frequency and recency
of acknowledging the sent reminders. Each plot also presents

a best-fit linear regression line, as well as the adjusted R2 for
the regression.

In general, the frequency and recency of past success
(adherence) tends to show medium-to-strong relationships to
current success. The frequency and recency of acknowledged
reminders tends to show stronger effects than the frequency and
recency with which those reminders were sent. This is
unsurprising, as one would expect that sent reminders could be
ignored, but acknowledgment indicates that the participant
actually processed the reminder.

Table 2 presents a logistic regression, with the daily success or
failure as the response variable, participants as a random effect,
and the predictors being the self-efficacy factor and the observed
frequency and recency of reminder acknowledgment.
Self-efficacy was not significant, frequency acknowledged was
marginally significant, and the recency acknowledged was
highly significant.

J Med Internet Res 2017 | vol. 19 | iss. 11 | e397 | p. 10http://www.jmir.org/2017/11/e397/
(page number not for citation purposes)

Pirolli et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Factors related to the likelihood of a participant succeeding at behavioral goal on a given day. Frequency of adherence is the cumulative
number of past “success report” days. Recency of adherence is the number of days since last “success report.” Frequency sent is the cumulative count
of reminders previously sent. Recency sent is the number of days since the last reminder was sent. Frequency acknowledged is the cumulative count of

previously acknowledged reminders. Recency acknowledged is the numbers of days since the last acknowledgement of a reminder. Adjusted R2 values
are based on linear regressions.

Table 2. Logistic regression of daily success in achieving self-selected goals on self-efficacy and frequency and recency of acknowledged implementation
intention reminders.

P valueOdds ratio (95% CI)Coefficient (standard error)Predictor

.0070.5657 (−1.2231 to 0.0602)−0.5696 (0.3185)Intercept

.770.8872 (−0.9655 to 0.7232)−0.1197 (0.4180)Low self-efficacy

.091.0717 (−0.0116 to 0.1505)0.0694 (0.0410)Frequency acknowledged

<.0010.9522 (−0.0700 to −0.2852)−0.0490 (0.0104)Recency acknowledged

An analysis of deviance also showed that including frequency
acknowledged to the base model of recency acknowledged was

marginally significant χ2
1=2.8 P=.09, and adding self-efficacy

to the acknowledgment factors was not, χ2
1=0.1.

Effects of Implementation Intention Reminder
Schedules on Behavior Success: A Test of ACT-R
Memory Predictions
Table 3 shows the mean proportion of days on which
participants reported succeeding at their behavior change goals.
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Notably, the condition in which participants received reminders
was significantly better than the conditions in which others did
not receive reminders, (logistic regression on reminders vs no
reminders: coefficient=2.018, SE=0.572, OR=7.52, 95% CI
0.9037-3.2594, P<.001).

The pattern of success rates in Table 3 suggests an interaction
of reminder frequency by distribution, as predicted by the
ACT-R base-level learning theory (Figure 3). A logistic
regression was performed on the average rate of participant
success in performing their goals over 28 days in the 2 X 2
factorial conditions of distribution (distributed, massed) X
frequency (low, high). The results of this regression are
presented in Table 4. Although there are no main effects of the
frequency or distribution variables, there was a highly significant
interaction. An analysis of deviance showed that the model with
the interaction term was significantly better than a reduced

model without the interaction term, χ2
1=13.056, P=.0003. Post

hoc linear contrasts show that the high frequency-distributed
condition produced higher participant success than the high
frequency-massed, z=4.441, SE=0.2853, P<.001; the high
frequency-massed produced higher success than the low
frequency-massed, z=3.041, SE=0.2609, P=.003; and the low
frequency-massed produced marginally higher success than the
low frequency-distributed, z=1.929, SE=0.2663, P=.069.

Table 1 shows that each of the 2 X 2 cells of the frequency X
distribution factorial have N=11 to N=14 participants. Gelman
and Carlin [48] suggest that such small-sample experiments
warrant an analysis of two kinds of potential experimental design
errors: (1) the probability that the estimate of the effects is in
the wrong direction (Type S [sign] error) and (2) the factor by
which the magnitude of an effect might be overestimated (Type
M [magnitude] error). We followed the procedure recommended
by Gelman and Carlin. First, we went to the literature to identify
a possible range of true effects sizes for our experiment. A recent
meta-analysis [49] of the effect size (ES) of behavior-change
interventions [50] indicates an ES=0.37 in improving physical
activity and diet over the short term (<12 weeks), with a 95%
CI 0.26-0.48. Next, using the retrodesign() function [48] we
determined the power, Type S, and Type M error for the
interaction effect in Table 4. At ES=0.37, the probability that
a replication would be statistically significant at alpha=.05 was
power=0.39, the probability that a replicated estimate would
have the incorrect sign was Type S error=0.0003, and the
expectation of the ratio of the estimated interaction effect to a
true ES=0.37 was Type M error=1.56. It is unlikely that the sign
of the significant interaction is incorrect (Type S error), and the
magnitude of the interaction in Table 4 is likely overestimated

by a factor of 1.56 (Type M error). For ES=0.26: power=0.22,
Type S error=0.0038, Type M error=2.13; for ES=0.48:
power=0.59, Type S error<0.0001, Type M error=1.30.

These analyses suggest that the pattern of participant success
at their behavior-change goals over 28 days is consistent with
the ACT-R theoretical predictions of how the variations in
reminder schedules affect the base-level activation of
participants’ implementation intentions in declarative memory.

Fit of the ACT-R Dual-System Mathematical Model
to Individual-Level Data
Figure 7 plots the goal success predictions of the dynamical
model against the observed data as functions of past adherence
(frequency and recency) and reminders acknowledged
(frequency and recency). The points are the observed
probabilities of success, and the lines are the model predicted
probabilities. Each point is the mean of the observed individual
daily success for participants at a given level of recency or
frequency, and similarly, the lines are the means of the model’s
predictions for each individual on each day, pooled by level of
frequency and recency. Parameter estimates for the fitted more
are presented in Table 5. The Brier score on this fit was 0.1724.

Figure 7 suggests that the model is doing a reasonable job of
predicting the observed frequency and recency effects because
of the reminding interventions, as well as the recency and
frequency effects because of the practice of the target behavior.
The model does appear to predict a more sublinear relationship
between the recency of reminder acknowledgment than is
present in the observed data.

The parameters estimated in Table 5 also appear to be generally
reasonable. In predicting the probability of recalling a goal and
striving to do a new behavior, the activation levels of
implementation intentions and memory for past goal
performance are both associated with nonzero positive weights
(β1 and β2). Similarly, the base-level activation of
implementation intentions and memory for past goal
performance are also positively weighted in determining the
utility of goal-striving performance (β4 and β5). The values of
parameters, a, c, determining the base-level learning that we
estimated are different than those found in controlled laboratory
studies [37], where alpha=.177 and c=0.217. It should be noted
that the Pavlik and Anderson study involved multiple blocks of
multiple trials within a study day, and the spacing of reminders
was manipulated within a 60 to 90 min study session. In our
study, we were manipulating the spacing of reminders over
many days.

Table 3. Mean proportion of days on which participants reported success in achieving their behavior-change goal (standard deviation in parentheses).

FrequencyDistribution

HighLow

0.55 (0.24)0.32 (0.33)Distributed, mean (SDa)

0.38 (0.26)0.34 (0.22)Massed, mean (SD)

0.18 (0.23)No reminders, mean (SD)

aSD: standard deviation.
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Table 4. Logistic regression on the average rate of participant success in performing their goals over 28 days in the 2 X 2 factorial conditions of
distribution (distributed, massed) X frequency (low, high).

P valueOdds ratio (95% CI)Coefficient (standard error)Predictor

<.0010.5323 (−0.8681 to 0.3984)−0.6305 (0.1197)Intercept

.301.1770 (−0.1467 to 0.4746)0.1630 (0.1584)High frequency

.491.1238 (−0.4448 to 0.2112)−0.1167 (0.1672)Distributed distribution

<.0012.2242 (0.3656-1.2341)0.7994 (0.2215)High frequency X distributed

Figure 7. Fit of the adaptive control of thought-rational (ACT-R) dual-system model to daily success in performing behavior goals.

Table 5. Parameter estimates for the adaptive control of thought-rational (ACT-R) dual-system model.

DescriptionValueParameter

Scaling parameter on activation for predicting goal recall8.107708β 0

Weight, implementation intention activation in predicting probability goal recall4.896597β 1

Weight, memory activation of performing goals in predicting probability goal recall3.535064β 2

Scaling parameter on utility of goal striving productions−0.732805β 3

Weight, implementation intention activation in utility of goal striving productions0.297554β 4

Weight, memory activation of performing goals in utility of goal striving productions1.396243β 5

Scaling parameter on base-level activation learning1.000000a

Slope parameter on base-level activation learning0.077193c

Initial utility of new habit−3.818326U 0

Utility learning rate for the habit0.291842α

Reward value for new habit0.000000R
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Discussion

Consistent with previous research on implementation intentions
[22], we found that reminders of implementation intentions sent
as SMS text messages have a boosting effect on success in
achieving behavior change goals. Further exploratory analysis
suggested that the effects of reminding on behavioral success
appear to show signatures long associated with human memory:
a decay of effectiveness because of forgetting and improvement
with repetition. The analysis also indicates improvement with
behavior practice, which is ubiquitous in the procedural learning
of skills and habits. A mathematical model based on ACT-R
captures the dynamics of people accomplishing their goal
behaviors under the influence of implementation intentions,
reminders, and their own past performance.

For practitioners, prior research had suggested the utility of
using implementation intentions in mHealth [22,51]. Our results
suggest that reminders can boost the effectiveness of
implementation intentions in ways predicted from basic memory
theory. Our results also suggest the importance of the recency
factor: the number of days since a reminder was acknowledged
accounts for a large proportion of the variance in goal adherence
(Figure 6) and was highly significant in the analysis reported
in Table 2. Attending to reminders is associated with performing
the behavior soon thereafter. This might suggest that mHealth
reminders be triggered by some combination of nonadherence
and time since the last reminder was sent. One concern might
be that sending more reminders might just cause users to decide
to ignore them. As a post hoc analysis, we examined whether
the acknowledgment of reminders was reduced when reminders
were temporally clustered in the massed condition, in contrast
to the distributed condition. We found no statistical difference,
but we still were not sending reminders more than once a day.

It has been argued [52] that the current menagerie of behavior
change theories [11,50] needs to be refined or replaced with
precise models that yield predictions at the granularity of
assessments and interventions that are delivered by mHealth
systems in the ecology of everyday life. Such models would
provide a rigorous foundation for engineering sophisticated,
individualized interventions that are optimally delivered in the
right contexts at the right time. In the present research, we
worked from the existing ACT-R theory [7] to propose a model

of goal-striving and habit formation that would predict the
effects of implementation intentions and reminders. Previous
research [18] had suggested that human declarative memory
mechanisms were implicated in the effectiveness of this EBI.
ACT-R predicts the dynamics of declarative memory retrieval
in response to additional training or use, and so the theory was
extended to make predictions about the dynamics of
implementation intention effectiveness as a function of the
timing of reminder interventions.

Related ACT-R models [34] have been developed to predict
the dynamics of self-efficacy and goal success in users of an
mHealth app called DStress [10]. In that case, there were two
kinds of modeling: (1) full simulations in the ACT-R cognitive
architecture and (2) dynamical mathematical models
approximating the ACT-R mechanisms, similar to the approach
presented here. The ACT-R–inspired mathematical models are
also similar to the dynamical models presented in Pavel et al
[45], which also used a dual-systems approach for goal-striving
and habit formation. In other applied domains such as cognitive
tutoring [53] and language learning [36], it has been useful to
develop user models that are approximations to the detailed
ACT-R simulation architecture, yet, still support prediction by
computation (see also, [54]).

To repeat an argument made by Pirolli [34], the motivation for
developing mHealth theories by extending theories of the human
cognitive architectures rests on four theses [55,56]: (1) the
integration thesis, that cognitive architectures provide a unified
account of how the modules of the mind function together to
produce coherent behavior and can provide a basis for an
integration across specialized domains of EBIs, theories of
behavior change, and multiple systems and mechanisms of
action in behavior change; (2) the decomposition thesis, that
long-term behavior change can be decomposed to learning and
intervention events occurring at a much finer granularity of
time; (3) the modeling thesis, that models in cognitive
architectures can provide a basis for bridging those events at
the small scale to the dynamics of behavior change occurring
at the large scale; and (4) the relevance thesis, that long-term
changes and outcomes can be improved by modeling and
predicting specific just-in-time interventions in contexts that
are occurring at the smaller time scales in the ecology of the
everyday lives of people wishing to change.
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