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Abstract

Background: Automated disease code classification using free-text medical information isimportant for public health surveillance.
However, traditional natural language processing (NLP) pipelinesarelimited, so we propose amethod combining word embedding
with a convolutional neural network (CNN).

Objective: Our objective was to compare the performance of traditional pipelines (NLP plus supervised machine learning
models) with that of word embedding combined with a CNN in conducting a classification task identifying International
Classification of Diseases, Tenth Revision, Clinical Maodification (ICD-10-CM) diagnosis codes in discharge notes.

Methods: We used 2 classification methods: (1) extracting from discharge notes some features (terms, n-gram phrases, and
SNOMED CT categories) that we used to train a set of supervised machine learning models (support vector machine, random
forests, and gradient boosting machine), and (2) building a feature matrix, by a pretrained word embedding model, that we used
to train a CNN. We used these methods to identify the chapter-level ICD-10-CM diagnosis codesin a set of discharge notes. We
conducted the evaluation using 103,390 discharge notes covering patients hospitalized from June 1, 2015 to January 31, 2017 in
the Tri-Service General Hospital in Taipei, Taiwan. We used the receiver operating characteristic curve as an evaluation measure,
and calculated the area under the curve (AUC) and F-measure as the global measure of effectiveness.

Results: In5-fold cross-validation tests, our method had a higher testing accuracy (mean AUC 0.9696; mean F-measure 0.9086)
than traditional NLP-based approaches (mean AUC range 0.8183-0.9571; mean F-measure range 0.5050-0.8739). A real-world
simulation that split the training sample and the testing sample by date verified this result (mean AUC 0.9645; mean F-measure
0.9003 using the proposed method). Further analysis showed that the convolutional layers of the CNN effectively identified a
large number of keywords and automatically extracted enough concepts to predict the diagnosis codes.

Conclusions:  Word embedding combined with a CNN showed outstanding performance compared with traditional methods,
needing very little data preprocessing. This shows that future studies will not be limited by incomplete dictionaries. A large
amount of unstructured information from free-text medical writing will be extracted by automated approaches in the future, and
we believe that the health care field is about to enter the age of big data.
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Introduction

Public health surveillance systems areimportant for identifying
unusual events of public health importance and will provide
information for public health action [1]. However, most
surveillance systems can only use structured data, such as
International Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) diagnosis codes. The current
methods for collecting this structured information usually
involve manual identification, but manual identification of
disease codes from free-text clinical narrativesislaborious and
costly. Moreover, most surveillance systems do not have enough
expert clinical codersfor real-time surveillance, and this leads
to delaysin the release of disease statistics. Government health
administrators need timely information to rapidly assess disease
prevention and health protection priorities. A timely and
computer-based disease classification approach is required to
further assist public health action.

Automated surveillance methods are increasingly being
researched because of the increasing volume and accessibility
of electronic medical data, and arange of studies have proven
thefeasibility of extracting structured information from clinical
narratives [2-6]. Previous studies suggested that these text
mining approaches would need to effectively deal with the
idiosyncrasies of the clinical sublanguage to further improve
performance [7]. However, compiling a complete medical
dictionary may be impossible because of the variability of
clinical vocabularies. Moreover, traditional natural language
processing (NLP) pipelines can deal with synonyms but not
similar terms, so supervised machine learning models often face
the curse of dimensionality. For example, if we only want to
identify infectious disease-related medical documents, bacteria
names such as Sreptococcus pneumoniae and Mycobacterium
tuberculosis can actually be treated as similar for classification
purposes. An effective text preprocessing approach would need
to learn how to combine similar concepts, and current NLP
pipelines often cannot deal with thisissue.

Another important challenge for automated surveillance
algorithms is emerging disease. For example, influenza HIN1
broke out in 2009 and could not have been recorded in any
medical records before 2008. Traditional automatic methods
based on term vectors cannot use new terms [2-6]. This
weakness means that traditional methods cannot possibly
implement a fully automated pipeline. The key reason that
human experts can successfully identify emerging diseases is
that humans can learn semantics from external resources.
Traditionally, these external resources usually take the form of
adictionary, and thisiswhat will be used in the NLP pipeline.
However, dictionary construction is laborious, and it is till
difficult to completely include all semantic relationships. In
summary, traditional NLP pipelines are complex and inefficient,
and successful automated surveillance methods will also need
to include automatic handling of semantics.

http://www.jmir.org/2017/11/e380/

Word embedding is a feature learning technique where
vocabularies are mapped to vectors of real numbers [8,9].
Word2vec [10] and GloVe [11] are the 2 most popular word
embedding algorithms. These methods showcase interesting
linear substructures in the word vector space: word vectors for
similar concepts are likewise closein terms of cosine similarity
and Euclidean distance. This property may help us identify
concept groups and reduce the data dimensionality in future
machine learning algorithms. However, clinical narratives will
be transformed into a matrix, and standardization to vectors
with different length is difficult for general machine learning
models. Convolutional neural networks (CNNSs) uselayerswith
convolving filters that are applied to local features, and they
can handle matrix input [12]. CNNs were originally invented
for computer vision applications and have subsequently been
shown to achieve excellent results in semantic parsing [13],
search query retrieval [14], and sentence classification [15].
Thekey reason for the success of CNNsistheir fuzzy matching
using convolving filters, and we believe that convolving filters
are a great way to process similar texts involving the same
concepts. A lot of words and phrases that are conceptually
similar can be combined in a convolving filter via fuzzy
matching technol ogy, thereby reducing the data dimensionality
and avoiding overfitting.

This project aimed to compare traditional machine learning
pipelines (NL P plus supervised machine learning models) versus
word embedding combined with a CNN in order to identify
chapter-level ICD-10-CM diagnosis codes in discharge notes.
We hoped to develop an efficient and effective real-time
surveillance pipeline for disease statistics. In addition, we further
analyzed the convolving filters of the CNN to understand their
functions.

Methods

Data Source

The Tri-Service General Hospital, Taipei, Taiwan, supplied
deidentified free-text discharge notes from June 1, 2015 to
January 31, 2017. Research ethics approval was given by the
institutional ethical committee and medical records office of
the Tri-Service General Hospital to collect data without
individual consent for sites where data are directly collected.
The Tri-Service Genera Hospital islocated inthe Neihu District
of Taipel under the name of National Defense Medical Center
and provides medical service for service members, their family
dependents, and civilians. It has been rated by the Ministry of
Health and Welfare in Taiwan as a first-rate teaching hospital
on the level of a medical center. The hospital has about 1700
beds and 6000 inpatients per month, and most inpatients are
civilians. We collected a total of 103,390 discharge notes, and
corrected misspellings using the Hunspell version 2.3 package
[16] and a dictionary built using English Wikipedia and
Gigaword [17]. ICD-10-CM codes had been used to label these
discharge notes for the purpose of requesting health insurance
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fees, and the medical records department was responsible for
their correctness. The Taiwan National Health Insurance
Administration routinely samplesacertain number of discharge
notes for verification, and a wrongly labeled discharge note is
punishable by a 10- to 20-fold fine. Discharge notes are often
labeled with multiple ICD-10-CM codes, and all ICD-10-CM
codes were truncated at the 1-character level. There are atotal
of 21 categories in the 2017 version. Table 1 shows the
frequency distribution of 1-character-level codes. Neoplasms
and diseases of the circulatory system were the most common
ICD-10-CM codes in our hospital.

We used 2 testing procedures to assess the performance of the
model. First, we conducted a 5-fold cross-validation test.

Linetd

Second, we created training and testing sets by splitting the
sample by date (July 1, 2016), because thisis morerealistic. A
classifier can only betrained using retrospective datain thereal
world, and it will be used to classify future data; the second
testing process replicatesthis. All cal culations were conducted
on a Fujitsu RX2540M1 48-core CPU, 768 GB RAM server
(Fujitsu Ltd, Tokyo, Japan), and the all-flash array was
Accel Stor NeoSapphire NS3505 (Accel Stor, Inc, Taipei City,
Taiwan) with a 5 TB seriad advanced technology
attachment-interface solid-state drive and connectivity of 56
GB/second FDR InfiniBand Quad Small Form-factor Pluggable
(Fiberon Technologies, Inc, Westborough, MA, USA).

Table 1. Prevalence of different International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) chapter-level codes in

discharge notes from the Tri-Service General Hospital, Taipei, Taiwan.

ICD-10-CM  Definition Stage of the study
d
code Beforeune 30,2016  After July 1, 2016 Full study period
(n=64,023) (n=39,367) (n=103,390)
n (%) n (%) n (%)
A00-B99 Certain infectious and parasitic diseases 7731 (12.1%) 5455 (13.9%) 13,186 (12.8%)
C00-D49 Neoplasms 20,585 (32.2%) 13,993 (35.5%) 34,578 (33.5%)
D50-D89 Diseases of the blood and blood-forming organs 4516 (7.1%) 3132 (8.0%) 7648 (7.4%)
and certain disorders involving the immune
mechanism
E00-E89 Endocrine, nutritional, and metabolic diseases 13,223 (20.7%) 8765 (22.3%) 21,988 (21.3%)
FO1-F99 Mental, behavioral, and neurodevel opmental 4612 (7.2%) 2942 (7.5%) 7554 (7.3%)
disorders
G00-G99 Diseases of the nervous system 3703 (5.8%) 2602 (6.6%) 6305 (6.1%)
HOO-H59 Diseases of the eye and adnexa 2337 (3.7%) 1374 (3.5%) 3711 (3.6%)
H60-H95 Diseases of the ear and mastoid process 802 (1.3%) 470 (1.2%) 1272 (1.2%)
100-199 Diseases of the circulatory system 17,650 (27.6%) 11,465 (29.1%) 29,115 (28.2%)
JO0-J99 Diseases of the respiratory system 7743 (12.1%) 5584 (14.2%) 13,327 (13.0%)
K00-K95 Diseases of the digestive system 12,849 (20.1%) 8444 (21.4%) 21,293 (20.6%)
L00-L99 Diseases of the skin and subcutaneous tissue 2568 (4.0%) 1711 (4.3%) 4279 (4.1%)
MO00-M99 Diseases of the musculoskeletal system and 9170 (14.3%) 5152 (13.1%) 14,322 (13.9%)
connective tissue
NO0O0-N99 Diseases of the genitourinary system 9929 (15.5%) 7325 (18.6%) 17,254 (16.8%)
0O00-09A Pregnancy, childbirth, and the puerperium 2509 (3.9%) 1271 (3.2%) 3780 (3.7%)
POO-P96 Certain conditions originating in the perinatal 793 (1.2%) 493 (1.3%) 1286 (1.2%)
period
Q00-Q99 Congenital malformations, deformations, and 927 (1.4%) 513 (1.3%) 1440 (1.4%)
chromosomal abnormalities
ROO-R99 Symptoms, signs, and abnormal clinical and 5271 (8.2%) 3824 (9.7%) 9095 (8.9%)
laboratory findings, not el sewhere classified
S00-T88 Injury, poisoning, and certain other conse- 6272 (9.8%) 4564 (11.6%) 10,836 (10.6%)
guences of external causes
V00-Y99 External causes of morbidity 791 (1.2%) 68 (0.2%) 859 (0.8%)
Z00-299 Factors influencing health status and contact 15,488 (24.2%) 10,093 (25.6%) 25,581 (24.8%)

with health services
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Traditional Free-Text Classification Techniques

Traditional classification techniques often combine an NLP
pipeline and a classifier to conduct free-text medical writing
classification tasks. We extracted the detailed features from the
discharge notes by the NLP pipeline; then ICD-10-CM codes
were assigned by human experts to each discharge note. We
used the labeled features to train a classifier, and we used the
well-trained model to predict the unlabeled testing data.

In this study, we used a 2-part NLP pipeline to extract the
discharge note features. First, word-based featureswere directly
extracted from the free-text description and n-gram phrases (n
range 2-5) were generated by the Rweka version 0.4-30 package
[18]. To reduce the complexity of the data, we only included
n-gram phrases with counts >10. Second, we used SNOMED
CT International Edition version 20170131 categories to
integrate synonyms. We used the bag-of-words model to
vectorize the extracted features (1 vector per discharge note)
and transformed these feature vectors into a document-term
matrix using the tm version 0.7 package [19]. This matrix was
then the input into the following machine learning models.

Support Vector Machine

Support vector machines (SVMs) are common classifiersinthe
machine learning field. They map all samples onto ahyperplane
and divide them by a clear gap. In addition, kernel tricks are
used to extend this hyperplane. SVMs are proven to have the
best performance in free-text medical writing classification,
compared with naive Bayes classifiers, C4.5 decision trees, and
adaptive boosting [20]. In this study, we used the 4 most
common kernel tricks: linear, polynomia (degree=3), radial
basis, and sigmoid. We used the 1071 package (R package
version 1.6-8) [21] asthe SVM implementation and set all other
parameters to their default values.

Random Forest

Random forests (RFs) construct multiple decision treesand use
information from each tree to make predictions. It was the
best-performing classification model in a previous text
classification study [22], compared with SVMs, naive Bayes
classifiers, and the k-nearest neighbors algorithm. We used the
H20 version 3.10.2.2 package [23] as the RF implementation
and set all parameters to their default values.

Gradient Boosting Machine

Gradient boosting machines (GBMs) are also ensembles of
weak decision trees, where the gradient boosting method is used
to improve the predictive ability of each tree [24]. They use
greedy function approximation to build a series of weak trees
[25]. The H20 package a so providesthe function for the GBM
implementation, and we set all parametersto their default val ues.

Using the “no free lunch” theorem [26], we combined a
traditional NLP pipeline with the 3 abovementioned models
and tested their performance on our task.

http://www.jmir.org/2017/11/e380/
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Word Embedding Combined With a Convolutional
Neural Network

Traditional NLP pipelines are limited by their preexisting
dictionary and need to build acomplex processing flow. Herein,
we propose amethod combining aword embedding model and
a CNN. Word embedding technology is useful for integrating
synonyms, and we used a pretrained GloVe model (English
Wikipedia plus Gigaword) to vectorize the words. We selected
a 50-dimensiona model with 400,000 words because of
computing time constraints. However, we believe that thiswas
sufficient because there were only 19,064 wordsin our 103,390
discharge notes. We transformed each discharge note into an
nx50 matrix for subsequent classification (where nisthe number
of words in the discharge note) and trained a CNN using these
labeled matrixes.

Although CNNs with various structures have been developed,
we focused on a 1-layer CNN with a filter region size of 1-5
(corresponding to 1-5 n-gram phrases) to increase comparability
with traditional machine learning technologies. In fact, these
simple models have recently achieved remarkably strong
performance [15,27,28]. Figure 1 shows the proposed model’s
architecture. We set 5 convolution channels, and their
convolution layers were as follows: (1) 40 convolving filters
with a1x50 region size, to identify theimportant words; (2) 30
convolving filters with a 2x50 region size, to identify the
important 2-gram phrases; (3) 15 convolving filterswith a3x50
region size, to identify the important 3-gram phrases; (4) 10
convolving filters with a 4x50 region size, to identify the
important 4-gram phrases; and (5) 5 convolving filters with a
5x50 region size, to identify the important 5-gram phrases.
These convolution layers were connected to a rectified linear
unit layer to enhance the nonlinearity of the network. We then
applied a max pooling layer over the feature map and took the
maximum value. The above steps are similar to those of the
keyword recognition process, and 100 features were extracted
from each discharge note. To avoid the risk of overfitting, we
used adropout layer with a50% drop rate after the convolution
channels [29]. Finally, we used logistic regression to connect
thefeatures, and the cross-entropy lossfunctionin thelosslayer
to train the CNN.

We used the MXNet version 0.8.0 package [30] to implement
the above architecture. The settings used for the training model
wereasfollows: (1) minibatch gradient descent with 1000 bench
size for optimization; (2) learning rate=.05; (3) momentum
coefficient=.9; (4) L2 regularization coefficient=.00001; and
(5) tolerance of early stopping per 100 iterations=.0001.
Multimedia Appendix 1 shows an example code for
implementing the word embedding and CNNs for free-text
discharge note classification.
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Figure 1. Model architecture with 5 convolution channels and 1 full connection (FC) layer. ReL U: rectified linear unit.

M odel Details and Evaluation I ndex

We conducted oversampling processing for sufficiently
regarding positive cases but not skewing by an overwhelming
number of negative cases [31,32]. All the models return a
continuous val ue to evaluate model performance. SVM-related
models provide the decision values of the binary classifier; RF
and GBM models provide the mean of the probabilities from
thedecision trees; and CNNs provide the probabilities cal culated
by the logistic function. We used the receiver operating
characteristic curve as an eval uation measure, and the areaunder
the curve (AUC) provided a global measure of effectiveness.
Moreover, we provide the F-measure, which is calculated by
following equations: precision = TruePositives/ (TruePositives

http://www.jmir.org/2017/11/e380/

XSL-FO

RenderX

+ FalsePositives); recall = TruePositives / (TruePositives +
FalseNegatives); F-measure = (2 x precision x recall) /
(precision + recall).

Results

Cross-Validation Test

Table 2 shows the global and lowest 5 means of the training
and testing AUCs in the 5-fold cross-validation test. The
proposed word embedding plus CNN method provided the
highest AUCs (mean testing AUC = 0.9696; mean of thelowest
5 AUCs = 0.9135) and highest F-measures (mean testing
F-measure = 0.9086; mean of the lowest 5 F-measures = 0.7651).
It isworth noting that the SVM with the linear kernel trick had
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the highest mean testing AUC of all the traditional methods
(mean testing AUC = 0.9571; mean of the lowest 5 AUCs =
0.8891). The performances of the RF, GBM, and linear SVM
models were similar (mean testing AUCs of 0.9570, 0.9544,
and 0.9571, respectively). However, the RF and GBM models

Linetd

were very inefficient in some tasks (as Multimedia Appendix
2 shows). The RF and GBM models had a lower mean testing
AUC owing to the V00-Y 99 ICD-10-CM code identification
tasks; therefore, the linear SVM was arelatively stable model.

Table 2. Global (and lowest 5) means of training and testing AUCs?in the 5-fold cross-validation test.

Pipeline Training set Testing set
AUCP F-measure AUCP F-measure
Traditional
NLFE + SVMY (linear) 0.9947 (0.9836) 0.9546 (0.8560) 0.9571 (0.8891) 0.8606 (0.6387)
NLP+ SVM (polynomial)  0.8627 (0.6736) 0.5630 (0.2498) 0.8183 (0.6332) 0.5050 (0.2023)
NLP+ SVM (radial basis)  0.9565 (0.9146) 0.7984 (0.6613) 0.9363 (0.8582) 0.7569 (0.5352)
NLP + SVM (sigmoid) 0.9518 (0.9021) 0.7852 (0.6368) 0.9325 (0.8526) 0.7498 (0.5313)
NLP + RF® 0.9999 (0.9995)" 0.9864 (0.9628) 0.9570 (0.8800) 0.8739 (0.6475)
NLP + GBMY 0.9996 (0.9990) 0.9868 (0.9660) 0.9544 (0.8722) 0.8691 (0.6458)
Proposed
Glovel + CNN 0.9964 (0.9890) 0.9837 (0.9588) 0.9696 (0.9135)' 0.9086 (0.7651)

8AUC: area under the curve, calculated using the receiver operating characteristic curve.

PThe results are presented as the mean AUC or F-measure (mean of the lowest 5 AUCs or F-measures). Detailled AUCs and F-measures for each
chapter-level International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) diagnosis code are shown in Multimedia

Appendix 2.

°NLP; natural language processing for feature extraction (terms, n-gram phrases, and SNOMED CT categories).

dsvm: support vector machine.

€RF: random forest.

The best method for aspecific index.
9GBM: gradient boosting machine.

NGloVe: a50-dimensional word embedi ng model, pretrained using English Wikipedia and Gigaword.

ICNN: convolutional neural network.

Real-World Test

Table 3 shows the global and lowest 5 means of the training
and testing AUCs in the real-world test, where the testing
samples were split by date. The results of thistest were similar
to those of the cross-validation test. The testing AUC in the
real-world test was lower than that in the cross-validation test,
possibly because the heterogeneity between the training and
testing samples was higher in the real-world test owing to there
being many cyclical diseases. However, our proposed method
still had the highest performance on thetesting set (mean testing
AUC = 0.9645; mean testing F-measure = 0.9003; mean of the
lowest 5 AUCs = 0.8952; mean of the lowest 5 F-measures =
0.7204) and achieved the best results in almost all tasks.
Multimedia Appendix 3 shows the detail ed training and testing
AUCs. The testing AUC of the proposed method is only
obviously worse than that of traditional methods for the
Q00-Q99 codeidentification tasks. In addition, the performances
of al methods were bad for the V00-Y 99 code identification
tasks.

http://www.jmir.org/2017/11/e380/

Convolving Filter Analysis

We visualized 3 of the convolving filters selected for the
real-world test, as Figure 2 shows. Neoplasms were the most
common | CD-10-CM codesin our hospital, and we selected the
filter with highest information gain for these. Information gain
can be estimated as |G(C, F) = H(C) - H(C | F), where Cisthe
class (a specific ICD-10-CM code), F is the feature extracted
by the convolving filter, and H is the information entropy
function. This filter is a word filter that identified several
cancer-related words, such as carcinoma and adenocarcinoma,
when trained using the training data (Figure 2, panel A). As
expected, these words, embodying similar concepts, were
identified by the fuzzy matching technology. Moreover, the
samewordsin thetesting datawereidentified by thisconvolving
filter (Figure 2, panel B). Figure 2, panel C shows a 2-gram
convolving filter for certain infectious and parasitic diseases,
which canidentify many pathogens. It isworth mentioning that
some pathogens absent in the training data were identified by
thisfilter in thetesting data (Figure 2, panel D). Identifying the
external causes of morbidity was the most difficult task for all
of the methods, and Figure 2, panel E showsthe most important
filter for thistask. Some accident-related words were identified,
such as fracture and injury, but these words were widely used
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in our discharge notes. Thetotal number of discharge notes that
included these words was 7855, but only 791 discharge notes
were coded as V00-Y99 in the training set. This caused the
information gain to be very low for the testing set (Figure 2,
panel F).

Figure 3 shows the information gain distribution of the
convolving filtersin each task, demonstrating large differences

Linetd

between them. The highest-performing classification tasks often
extracted high information gain featuresusing convolving filters.
Moreover, when the geometric mean of the information gain
ratio between the training and testing sets was over 80%, the
testing AUC was more than 0.98. It is worth noting that the
information gain ratio was very low for Q00-Q99 and V00-Y 99
(19.9% and 0.9%, respectively). This may explain the lower
performance in these tasks.

Table 3. Global (and lowest 5) means of the training and testing AUCs? in the real-world test.

Pipeline Training set Testing set
AUCP F-measure AUCP F-measure
Traditional
NLF + SVMY (linear) 0.9921 (0.9768) 0.9365 (0.7983) 0.9477 (0.8549) 0.8458 (0.5984)
NLP + SVM (polynomial)  0.9103 (0.7975) 0.6316 (0.4045) 0.8716 (0.7400) 05761 (0.2802)
NLP + SVM (radial basis) ~ 0.9577 (0.9208) 0.7954 (0.6484) 0.9349 (0.8476) 0.7588 (0.5258)
NLP + SVM (sigmoid) 0.9522 (0.9058) 0.7840 (0.6261) 0.9259 (0.8196) 0.7515 (0.5209)
NLP+ RF® 0.9996 (0.9985)f 0.9869 (0.9664)" 0.9483 (0.8484) 0.8582 (0.5901)
NLP + GBMY 0.9995 (0.9985) 0.9821 (0.9562) 0.9462 (0.8416) 0.8568 (0.5948)
Proposed
Glove" + CNN! 0.9956 (0.9868) 0.9803 (0.9523) 0.9645 (0.8952)" 0.9003 (0.7204)f

8AUC: area under the curve, calculated using the receiver operating characteristic curve.

PThe results are presented as the mean AUC or F-measure (mean of the lowest 5 AUCs or F-measures). Detailed AUCs and F-measures for each
chapter-level International Classification of Diseases, Tenth Revision, Clinical Madification (ICD-10-CM) diagnosis code are shown in Multimedia

Appendix 3.

°NLP; natural language processing for feature extraction (terms, n-gram phrases, and SNOMED CT categories).

dsvm: support vector machine.

€RF: random forest.

The best method for aspecific index.
9GBM: gradient boosting machine.

NGloVe: a50-dimensional word embeddi ng model, pretrained using English Wikipedia and Gigaword.

ICNN: convolutional neural network.
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Figure 2. Visualization of selected convolving filters.
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Figure 3. Information gains of the features extracted by the convolving filters in each classification task. AUC: area under the curve; |G: information

gain.
AC0-B99 C00-D49 DS50-D89 E00-E89 F01-F39 G00-G99 HO0-H59
AUC =0.9974/0.9858 AUC = 0.9956/0.8915 AUC = 0.9982/0.9829 AUC =0.9970/0.9906 AUC = 0.9998/0.9937 AUC = 0.9983/0.9771 AUC = 0.9998/0.9868
IG ratio = 82.9% 1G ratio = 82.8% |G ratio = 96.2% |G ratio = 98.3% |G ratio = 96.5% IG ratio = 80.6% IG ratio = 88.7%
0.5-
04-
0.3-
0.2-
HB0-H95 100-199 Joo-J99 KO0-K95 LOO-L9% MO0D-M99 NOD-NS9
AUC =0.9999/0.9870 AUC =0.9857/0.8878 AUC = 0.9888/0.8869 AUC =0.9860/0.9827 AUC = 0.9885/0.9682 AUC = 0.9948/0.9769 AUC = 0.9982/0.9842
IG ratio = 73.4% |G ratio = 100.8% |G ratio = 70.4% |G ratio = 77.9% |G ratio = 40.2% IG ratio = 49.2% IG ratio = 87.8%
0.5-
0.4
£
m
2 03-
=3
m|
Epz-
o2
£
O 1 - *
P S . % &
000-099 POO-P96 Q00-Q99 RO0-R99 500-T33 V00-Ye9 Z00-Z99
AUC =0.9899/0.8980 AUC = 0.9998/0.8978 AUC = 0.9893/0.8055 AUC =0.9872/0.9399 AUC = 0.8841/0.9271 AUC = 0.9986/0.8086 AUC = 0.9623/0.8947
IG ratio = 82.1% 1G ratio = 89.2% |G ratio = 19.9% |G ratio = 72.6% |G ratio = 68.0% |G ratio = 0.9% IG ratio = 57.3%
0.5-
04-
0.3~
0.2-
I : ! —_— =
0.0- Y —_——
Tra[b[ng Tes'tlng Tralh[ng Tes'tlng Tralhing Tes'tlng Tra'\hmg Tes'tmg Traﬁ'nng Tes'tmg Trai}ﬁng Tes'tmg Tra'l}mg Tes'tmg
Discussion preprocessing is based on word embedding, which can learn

Principal Findings

The proposed method, which combines word embedding with
a CNN, had a higher testing accuracy than all traditional
NLP-based approaches, regardless of the situation. Further
analysis showed that convolving filters had fuzzy matching
abilities, which greatly reduced the datadimension for the final
classification task. Moreover, the training AUCs of the
traditional methods were very closeto 1. This meansthat there
was no possibility of improvement, and the larger difference
between training set and testing set performances implies
overfitting.

Arbitrary free-text medical narratives include many word
combinations, and there is no good way of integrating similar
terms using the current NLP pipelines. Previous studies have
highlighted this issue and suggested that improvements are
possible by dealing more effectively with the idiosyncrasies of
the clinical sublanguage [7]. We believe that our proposal has
an advantage in this respect. The used fuzzy matching
technology offers a real chance of reducing the risk of
overfitting. This is not surprising, as CNNs have achieved
excellent results in some text mining tasks [13-15,22,27,28].
This study also demonstrated the advantages of using CNNs
for free-text medical narrative classification.

Our proposed method not only increased the accuracy compared
with traditional methods, but also can avoid troublesome data
preprocessing. Our solution for avoiding troublesome data
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semanticsfrom external resources. The vocabularies are mapped
to vectors of real numbers, and the word vectors for similar
concepts are likewise close. In our work, a discharge note is
converted into an nx50 matrix, where n isthe number of words,
and CNN classifies this matrix based on our designed
convolving filters. Because the word vectorsfor similar concepts
are likewise close in terms, convolutional layers effectively
identified a large number of keywords in a convolving filter
(data shown in Figure 2.). Finally, we used the document
features extracted by these cornvolving filters to identify
|CD-10-CM diagnosis codes. Thissimpleideaeffectively deals
with the idiosyncrasies of the clinical sublanguage, so the
proposed method does not require data preprocessing by external
dictionaries.

All the classifiers used in this study performed poorly on
V00-Y 99 (external causes of morbidity) coding tasks, which
may be attributed to sparse testing data (0.2%). A previous study
found that classifier performance was better on common cancers
than on rare cancers [2]. However, the performance of the
proposed method was clearly better than that of traditional
methods. The QO00-Q99 (congenital malformations,
deformations, and chromosomal abnormalities) coding tasks
were the next key point, as our method was obviously worse
than traditional methods in these tasks. After further analysis,
we found that the most common second-level 1CD-10-CM
diagnosis codes in Q00-Q99 are Q80-Q89 (other congenital
malformations), and the words used in these discharge notes
werereally complex. Thismeansthat our CNN may have needed
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more convolving filters to handle this issue. After we doubled
the number of filters and retrained the CNN, the testing AUC
greatly improved (testing AUCs of 0.9203 and 0.9235 in the
cross-validation test and the real-world test, respectively).
Hence, although a simple 1-layer CNN has aready shown
outstanding performance in our experiments, we believe that
there are many opportunitiesto improve the performance of the
proposed model.

All traditional term-based classifiers face the problem that
emerging diseases cannot possibly be correctly classified. For
example, influenzaH1N1 could not possibly have been recorded
in clinical narratives from 2000 to 2007, so term-based
classifiers could not have been aware of the HIN1 pandemic
of 2009 [3]. Our method can handle this problem using fuzzy
matching technology. Although HIN1 was not recorded in
discharge notes from 2000 to 2007, there was enough
information to allow the machine to understand that HIN1 was
an influenza subtype. In our pretrained GloVe model, HIN1
was very closeto someinfluenza-related terms, such as* swine,”
“influenza” “flu,” and “H5N1" (the cosine similarities were
0.835, 0.832, 0.831, and 0.716, respectively). Thus, we believe
that convolving filters could still have correctly identified HIN1
and classified related discharge notes as A00-B99 (certain
infectious and parasitic diseases), but more precise coding would
have been difficult. Thus, retraining or incrementally updating
the classifiers would still be necessary; otherwise, emerging
diseases would be merged into similar disease categories.
However, thisis still an important breakthrough in the free-text
medical writing classification task.

Previous studies described the classification methods used by
human experts, and several rule-based approaches have
demonstrated superior performance [3,33]. The only problem
with rule-based approachesisthat adding new diseasesrequires
the development of new models and rules. RF models use an
ensemble of decision trees, where each interior node is
differentiated on the basis of 1 of the terms. We consider the
similarity between RF and rule-based approaches to be higher
than with the proposed CNN. The machine must imitate human
behavior patterns to improve its correctness. The RF model
showed better performance than traditional classifiers in most
identification tasks (mean testing ranks of 3.000 and 3.190 in
the cross-validation test and real-world test, respectively),
possibly attributed to the RF model having a similar
identification process to that of human experts. The proposed
CNN architecture uses alogistic function for output, similar to
alinear SVM, athough nonlinear SV Ms showed alower training
AUC, which may have been due to wrong assumptions about
therelationship between features and the outcome. Thisevidence
shows that the assumption of a linear relationship between
extracted features and outcome is better than a nonlinear
assumption, and the architecture of our CNN also follows this
linear assumption in its last layer. However, rule-based
approaches are moreinclined to use positive termsthan negative
ones [3,33], so the architecture of RF or GBM is better than a
linear classifier. The proposed CNN showed the highest
accuracy; the key to successis not our network architecture but
the fuzzy term matching technology. Fuzzy term matching
reduces the hazard of overfitting, and the mean training AUCs
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for the RF and GBM models were higher than those for the
other models, possibly indicating that overfitting is more risky
in RF and GBM models. In summary, we consider that adeeper
CNN may provide more accurate predictive ability. Further
studies need to consider this to improve the performance of
word embedding combined with a CNN.

Outbreaks of deliberate and natural infectious disease can lead
to massive casualties unless public health actions are promptly
instituted [34]. Thus, many countries have been building
real-time infectious disease surveillance systems, such as the
Real-time Outbreak and Disease Surveillance system [35]. The
implementation principle of the Real-time Outbreak and Disease
Surveillance system is through the structured 1CD code, and it
needs real-time manual identification by emergency physicians.
However, this system cannot be extended to all diseases because
alot of resources are required. In addition to infectious di seases,
other chronic diseases also need to be surveilled in real time
[36]. Government health administrators need timely information
to rapidly assess disease prevention and health protection
priorities. A timely automated disease classification algorithm
isrequired. Our proposed method providesaviable pipelinefor
implementing a disease surveillance system of al diseases. It
not only improves classification performance but also avoids
the inherent limitations of traditional methods. Subsequent
studies can use thisalgorithm to further develop fully automated
disease surveillance systems.

Limitations

Several potential limitations of this study should be
acknowledged. First, we used only a 50-dimensional GloVe
model to process our data, to reduce computing time. However,
even a 50-dimensional model has better performance than
traditional methods. Thus, we believe that this will not affect
our result and that our proposa is a better solution for
conducting free-text medical narrative coding tasks. Second,
this study included discharge notes from only a single hospital,
so we cannot confirm how well it would generalize to other
data sources. Although this study only provided a feasibility
assessment for extrapolation over time, we believe that it still
demonstrated the superiority of our method. Third, this study
conducted the classification task only in discharge notes.
Discharge notes describe only the presence of the disease, but
do not include negative statements. Our CNN architecture
includes 3- to 5-gram phrase identifiers, but further studies are
still needed to apply this approach to patient progress notes to
proveits ability.

Conclusion

Our study showed that combining CNNswith word embedding
is a viable analysis pipeline for disease classification from
free-text medical narratives. Moreover, it showed outstanding
performance compared with traditional NL P employing machine
learning classifiers and may avoid troublesome data
preprocessing. More complex CNNs could be used to further
improve predictive performance, and future studies will not be
limited by incomplete dictionaries. Because our data were
collected from a single center, further studies can implement
this algorithm in other hospitals. We hope our experiment will
lead to a range of studies toward developing more efficient
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automated classification approaches and that alarge amount of  to take timely and correct action for disease prevention and
unstructured information will be extracted from free-text medical  health protection. When previously unlabeled clinical records
writing. We have devel oped aWeb app to demonstrate our work  are labeled using such an automated approach, we can obtain
[37]. Public health surveillance systems would become more  more data-driven cluesto help promote the progress of medicine.
efficient, and government health administrators would be able  The health care field will then truly enter the age of big data.
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