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Abstract

Background: Epidemiological studies on physical activity often lack inexpensive, objective, valid, and reproducible tools for
measuring physical activity levels of participants. Novel sensing technologies built into smartphones offer the potential to fill
this gap.

Objective: We sought to validate estimates of physical activity and determine the usability for large population-based studies
of the smartphone-based CalFit software.

Methods: A sample of 36 participants from Barcelona, Spain, wore a smartphone with CalFit software and an Actigraph GT3X
accelerometer for 5 days. The ease of use (usability) and physical activity measures from both devices were compared, including
vertical axis counts (VT) and duration and energy expenditure predictions for light, moderate, and vigorous intensity from
Freedson’s algorithm. Statistical analyses included (1) Kruskal-Wallis rank sum test for usability measures, (2) Spearman
correlation and linear regression for VT counts, (3) concordance correlation coefficient (CCC), and (4) Bland-Altman plots for
duration and energy expenditure measures.

Results: Approximately 64% (23/36) of participants were women. Mean age was 31 years (SD 8) and mean body mass index

was 22 kg/m2 (SD 2). In total, 25/36 (69%) participants recorded at least 3 days with at least 10 recorded hours of physical activity

using CalFit. The linear association and correlations for VT counts were high (adjusted R2=0.85; correlation coefficient .932,
95% CI 0.931-0.933). CCCs showed high agreement for duration and energy expenditure measures (from 0.83 to 0.91).

Conclusions: The CalFit system had lower usability than the Actigraph GT3X because the application lacked a means to turn
itself on each time the smartphone was powered on. The CalFit system may provide valid estimates to quantify and classify
physical activity. CalFit may prove to be more cost-effective and easily deployed for large-scale population health studies than
other specialized instruments because cell phones are already carried by many people.

(J Med Internet Res 2013;15(6):e111) doi: 10.2196/jmir.2470
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Introduction

Physical inactivity now ranks as the tenth leading cause of
premature mortality worldwide [1,2]. Inactivity has increased
substantially over the past 15 years [2]. Physical inactivity
contributes to the development of major chronic diseases, such
as coronary heart disease, stroke, hypertension, colon cancer,
breast cancer, Type 2 diabetes, and osteoporosis [3].

Information on physical activity in epidemiological studies is
generally obtained by questionnaires and more recently with
accelerometers [4]. The latter is becoming the accepted method
because of better accuracy and reliability of the physical activity
measures [4]. Accelerometers use the acceleration in the
subjects’ movements to quantify intensity over short epochs of
time. Although an improvement over questionnaires, deploying
accelerometers is labor intensive and burdensome to the
participant at times and may lead to potential changes in
behavior, such as not wearing the accelerometer or increasing
the measured behavior [5,6].

To address these problems and take advantage of the increased
use and improved technology of smartphones, we developed
CalFit [7-10]. CalFit is open-source software that runs on
Android smartphones. The system makes use of the
accelerometry and Global Positioning System (GPS) sensors
that are built into smartphones to record physical activity and
the time and location in which an activity occurs. It has the
potential to reduce cost and allow for enrollment of more
participants because smartphones are now in widespread use in
the general population [11]. Smartphones equipped with CalFit
could potentially make better physical activity measurements
compared to a common accelerometer, particularly because of
the addition of GPS measurements that can help researchers
better understand the spatial context of activity [12]. Calibration
and validation work of CalFit has been conducted thus far only
under laboratory conditions [13].

The aim of this research is to study the usability of CalFit
software and to assess the validity of its physical activity
measures in real world situations by comparing its physical
activity measures under free-living conditions with those
obtained from a well-known and validated accelerometer, the
Actigraph GT3X [14].

Methods

Sample
We enrolled volunteers to wear the CalFit phone and a
conventional accelerometer for 5 days. Thirty-six participants
were recruited by way of emails sent to colleagues from the
Centre for Research in Environmental Epidemiology (CREAL)
and to friends of colleagues as part of a larger study based on
active travel behaviors. Inclusion criteria were to live and work
or study in Barcelona, to live more than 10 minutes walking
distance from the workplace or school, and be able to ride a
bike for at least 20 minutes. Volunteers who met the eligibility
requirements were enrolled in the study after an information
session in which they were provided with details on study
objectives and procedures. The field study took place from
November 2011 to February 2012.

Our study protocol was approved by the Ethics Committee of
Hospital del Mar Research Institute, and written informed
consent was obtained from all the participants.

Instruments
Each participant was given an Actigraph GT3X accelerometer
[15] and a smartphone fitted with the CalFit application (see
Table 1). The devices were worn during 5 consecutive days on
a belt attached to the waist (see Figure 1). Participants were
instructed to remove devices only when performing aquatic
activities or sleeping, or when necessary to charge the
smartphone battery.

Table 1. Characteristics of CalFit and Actigraph GT3X.

Actigraph GT3XGoogle G1 with CalFitCharacteristics

3.8×3.7×1.8 cm11.7×5.6×1.7 cmSize

27 g158 gWeight

Anterior superior iliac spine of the right hipFrontal mean point between both anterior supe-
rior iliac spines

Placement

30 Hz10 HzSample rate

16 MB16 GBData storage

31 days18 hoursBattery life

ADXL335 triaxial accelerometer (Analog De-
vices, Norwood, MA)

AK8976A triaxial accelerometer (Asahi Kasei
Microsystems, Japan)

Accelerometer sensor

±3g±2.8gRegistered range of acceleration

Acceleration of the 3 axesAcceleration of the 3 axesOutcomes (measured)

Not wearing; standing, sitting, and lying; energy
expenditure and duration of physical activity

Not wearing; energy expenditure and duration
of physical activity

Outcomes (estimated)
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Data Treatment
Data from both devices were summarized to 1-minute intervals.
We merged data streams from both accelerometers identifying
the time alignment that yielded the highest association (adjusted

R2) between the 2 vertical (VT) axis measures, within a
maximum of 5-minute differences in time. To maximize the
comparability [16], the intensity of physical activity measured
in metabolic equivalents (METs) by both devices was calculated
according to the equation of Freedson et al [17], which uses a
linear function based on vertical axis counts to produce their
estimates: ActiGraph GT3X METs=1.439008 + (0.000795 *
VT counts/min). Because VT axis measures were recorded by
each instrument with different units (counts from Actigraph
GT3X versus g-force from CalFit), we first developed a linear
regression between the 2 vertical measures to convert the CalFit
g-force/min into counts/min, leading to the following adaptation
to the Freedson equation for estimating METs from smartphone
data: CalFit METs=1.2907087 + (0.4141791 * VT g/min).

The accelerometer nonwear intervals were defined as episodes
of at least 40 consecutive minutes of 0 counts and below 0.3g

in vertical axis for Actigraph GT3X and CalFit, respectively.
The latter threshold was established after analyzing CalFit
nighttime measurements. The American College of Sports
Medicine considers having at least 3 days with at least 10 hours
of recorded activity as a valid assessment of physical activity
[18]. We measured the usability of CalFit and of Actigraph
GT3X, understood as the ease of use to reach valid assessment
of physical activity, in 4 ways: (1) number of subjects with valid
assessments of physical activity (previous definition); (2)
number of recorded days per participant (ie, reflecting
participants’ ability to keep CalFit turned on); (3) total recorded
time per participant (ie, reflecting participants’ ability to keep
batteries charged); and (4) percent wearing time from total
recorded time (ie, reflecting participants’ability to wear CalFit).

Physical activity was defined as any minute with intensity equal
or greater than 1.5 METs. Physical activity was partitioned into
light, moderate, and vigorous levels of physical activity
following the conventional cutoffs of 3 and 6 METs. The main
summary measures of physical activity were vertical axis counts,
and duration and intensity of physical activity.

Figure 1. Set of devices that were worn during 5 consecutive days.

Analysis
Participants and physical activity characteristics are presented
as number (percentage) for categorical variables, mean (SD)
for continuous variables with normal distribution, or median

(interquartile range, IQR) for continuous variables with
non-normal distribution.

The comparison between CalFit and Actigraph GT3X was
conducted using several approaches. First, to assess differences
on usability as defined above, we performed a Kruskal-Wallis
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rank sum test (difference of medians components of usability).
Second, the correlation and association between the vertical
axis measures during coinciding time periods were assessed
through a Spearman correlation and linear regression,
respectively. Third, the agreement in the main summary
measures of physical activity, as previously defined and during
coinciding time periods, was studied using Lin’s concordance
correlation coefficient (CCC) [19] and Bland-Altman plots. The
CCC can be conceptualized as the ratio of between-subject
variance to total variance [20]. In other words, it provides a
measure of the percentage of differences attributable to the
participants, and its complement (1-CCC) gives the percentage
of differences attributable to the method (ie, CalFit vs Actigraph
GT3X). The bias between instruments was evaluated using a
linear regression analysis between the differences
(CalFit-Actigraph GT3X) and the mean, as
0.5*(CalFit-Actigraph GT3X), of the 2 physical activity
measures, considering the bias to be significant when the
confidence interval of the coefficient did not contain the value
zero. Both regression coefficient and regression line of bias
were also plotted into Bland-Altman plots indicated with red
letter and line, respectively.

As a sensitivity analysis, previous comparisons were also
performed during coinciding days with at least 10 hours of
recorded activity, without control of the coinciding time periods,
to test the influence of nonmeasured periods on physical activity

agreement. All analyses were conducted using R-2.14.1 2011
(The R Foundation for Statistical Computing).

Results

The sample consisted of 36 participants, most of which were
women (23/36, 64%), with a mean age of 30.9 years (SD 7.9),

and mean body mass index of 22.2 kg/m2 (SD 2.4) (Table 2).
Approximately 83% (30/36) were of Spanish nationality, 92%
(33/36) had high school or greater education, and 50% (18/36)
earned more than €2000 per month.

CalFit Usability
Of 180 possible days for recorded data, 19 were missing from
CalFit and 8 from the Actigraph GT3X. During recorded days,
there was a significant difference between the median time
recorded: 22 hours for CalFit and 24 hours for Actigraph GT3X
(Table 3). Also, there were differences for the percent of wear
time between CalFit and Actigraph GT3X (52% vs 59%) (Table
3). The median number of days with at least 10 wearing hours
was 3 and 5 for CalFit and Actigraph GT3X, respectively.

The main reasons for failed CalFit data collection among the
11 subjects who recorded less than 3 valid assessment of
physical activity were: (1) 6 lost an average of 2 days of
recording because CalFit was inadvertently turned off, (2) 2
had problems with phone battery life and their daily routine,
and (3) 3 did not wear the phone.

Table 2. Sociodemographic and physical characteristics of all participants (N=36).

ParticipantsSample characteristics

31 (8)Age (years), mean (SD)

Gender, n (%)

13 (36)Male

22 (2)BMI (kg/m2), mean (SD)

Educational level, n (%)

33 (92)More than high school

3 (8)Less than high school

Nationality, n (%)

30 (83)Spanish

6 (17)Others

Monthly income (€)

18 (50)More than 2000

18 (50)Less than 2000

Working status, n (%)

32 (89)Working

4 (11)Studying
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Table 3. Comparison of usability characteristics between Actigraph and CalFit.

P valueCalFitActigraph GT3XCharacteristic

.035 (4.8-5.0)5 (5-5)Days recorded (day), median (IQR)

<.0016474 (4635-7068)7200 (7200-7200)Recorded time (min), median (IQR)

<.0012938 (2269-3652)4109 (3735-4373)Wearing time (min), median (IQR)

2825 (2110-3556)Time coincident (min), median (IQR)

<.00122 (20-24)24 (24-24)Recorded time within recorded days (hour/day), median
(IQR)

<.00111 (10-13)14 (12.5-15)Worn time within recorded days (hour/day), median (IQR)

.0351.6 (46-58)58.5 (53-63)Percent of worn time on recorded time within recorded
days (%),median (IQR)

<.0013 (2-4.2)5 (4-5)Number of days with at least 10 wearing hours (day),
median (IQR)

<.00125 (69)34 (94)Participants with valid assessment of physical activity, n
(%)

Validity of Physical Activity
The linear regression and correlation analysis for average
vertical (VT) axis measures from both devices during coinciding

wear-time periods showed a high association (adjusted R2=0.85;
Spearman correlation coefficient .932, 95% CI 0.931-0.933)
(Figure 2, part A). During coinciding time periods (mean
time/day, 2600 min), the mean difference between Actigraph
GT3X and CalFit for the duration of active time (>1.5 METs)
was 2.24% (95% CI 0.76-3.72) and for intensity of physical
activity was 0.07 METs (95% CI 0.04-0.1) (Figures 2, parts B
and C). The comparison for both the duration and intensity of
physical activity showed that the variability attributable to the
measurement method (which is the complementary to the ratio
of between-subject variance to total variance) was less than
20% (Figures 2, parts B and C). There was no association
between difference and average of both measures neither for
duration (P=.55) nor for intensity (P=.22) of physical activity.

Validity of Physical Activity Through the Different
Intensity Thresholds
The comparison of measures of light, moderate, and vigorous
physical activity showed that less than 30% of the variability

was attributable to the method of measurement (Figure 3). In
contrast to light and moderate physical activity, the CalFit
measures of vigorous physical activity showed a tendency to
underestimate the duration in vigorous physical activity as
activity levels increased (P=.01) compared to the Actigraph
GT3X measure (Figure 3, part C). Figure 4 shows there was a
significant underestimation in the intensity recorded by CalFit
when participants performed vigorous activity according to
Actigraph GT3X (CalFit: mean 5.9, SD 1.0; Actigraph: mean
7.1, SD 1.1; P<.001).

Sensitivity to Measurement Period
Depending on the time inclusion criteria selected, the average
difference between Actigraph GT3X and CalFit during light
physical activity changed from a small but significant
overestimation of 1.7% (95% CI 0.4-3.1) for coinciding time
periods to a nonsignificant underestimation of –11.5 min (95%
CI –27 to 4.3) for coinciding valid days (Figure 3, part A vs
Figure 5, part A). There were no differences in duration of
moderate and vigorous physical activity across time inclusion
criteria (Figures 3, parts B and C vs Figures 5, parts B and C).
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Figure 2. Agreement between CalFit and Actigraph GT3X in vertical axis, duration, and energy expenditure in physical activity within the coinciding
measurement time periods. (A) accelerometer vertical axis measures, (B) duration in physical activity, and (C) intensity of physical activity.

Figure 3. Agreement between CalFit and Actigraph GT3X for duration of light, moderate, and vigorous physical activity within the coinciding
measurement time periods. (A) duration of light physical activity, (B) duration of moderate physical activity, and (C) duration of vigorous physical
activity.
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Figure 4. Comparison of average intensity recorded by CalFit and Actigraph GT3X within light, moderate, and vigorous physical activity identified
by Actigraph.

Figure 5. Agreement between CalFit and Actigraph GT3X during light, moderate, and vigorous physical activity within the coinciding days with at
least 10 hours of recorded activity. (A) duration of light physical activity per day, (B) duration of moderate physical activity per day, and (C) duration
of vigorous physical activity per day.
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Discussion

Principal Results
This study assessed the usability and validity of CalFit software
in a group of free-living volunteers. We compared CalFit to
physical activity measures with those obtained from the
Actigraph GT3X. The several approaches used to assess the
properties of the CalFit showed that (1) there is a strong
association between vertical axis measures from both devices;
(2) the measures of duration and energy expenditure in overall,
light, and moderate physical activity were highly concordant
between devices, whereas vigorous physical activity was
underestimated; (3) CalFit had lower usability compared to
Actigraph GT3X resulting in a lower proportion of participants
with valid assessment of physical activity; and (4) sensitivity
analysis that compared the agreement within coinciding time
periods to the agreement within coinciding days with at least
10 hours of recorded activity showed that the disparities in
wearing-time periods between devices did not contribute to any
significant bias into the measured validity.

Comparison With Prior Work
To our knowledge, this is the first study to compare
accelerometer use on smartphones to measure physical activity
with a currently well-validated instrument [12]. Previous
research on physical activity assessment with mobile phones
has shown that they are a useful tool to perform interventions
[21] and are helpful for activity recognition [22-24]. In addition
to these advantages, using smartphones for physical activity
research opens up opportunities for reaching large numbers of
participants at a relatively low cost [9]. The acceptance and
usability of smartphones to measure physical activity on
free-living conditions was previously unknown. Here, we
showed that 25 of 36 (69%) participants who used CalFit
recorded at least 3 valid days, which is the minimum
recommended to assess daily physical activity [25]. The greatest
weakness in CalFit usability was loss of data because of the
phone turning off and not having CalFit restart when the phone
was powered back on (50% of the missing data). In the current
version of CalFit, this problem has been solved by automatically
restarting CalFit each time the phone is turned on. The second
weakness was the battery life (recorded time and wearing time),
which was responsible for the other half of the missing data.
The difference in wearing time with the accelerometer was
partly because of participants having to charge the smartphone
during waking hours (as they were instructed to do). Since
conducting our study, we have found that newer generation
smartphones have improved battery life, and current field tests
indicate that CalFit is recording for longer durations without
charging [26].

This is also the first study to compare the validity of the vertical
axis measures and to use the same algorithm for estimating
physical activity in 2 different instruments. The association of
the vertical axis measures between the 2 tools was high (adjusted

R2 0.86; correlation coefficient .932; 95% CI 0.931-0.933),
which is within the range of the literature comparing different
models of Actigraph [27]. The concordance found in duration
and energy expenditure in physical activity measures of CalFit

and Actigraph GT3X showed that the measures from CalFit
and Actigraph GT3X are interchangeable (less than 20% of the
variability is attributable to differences between instruments).

Concordance in physical activity measures across different
definitions of time inclusion criteria showed that the results
remained constant despite the shorter wearing time of CalFit.
This suggests that the time charging the smartphone or the
shorter battery life did not have a significant influence on the
final measures. There was also a statistically significant bias
toward underestimation in measures of vigorous physical activity
estimated by CalFit compared to Actigraph GT3X. This may
be partially explained by the fact that we used average VT
measures instead of all measures per minute per participant and
because we assumed a linear relationship between acceleration
forces from smartphone and counts from Actigraph GT3X.

Strengths
One of the main strengths of this study is the use and testing
under free-living conditions. Participants maintained their daily
routines, which is difficult to replicate in controlled
environments. Another strength was the use of the concordance
measures for quantifying physical activity in addition to the
commonly used correlations. A third was using the Freedson
algorithm of physical activity for both instruments, which is a
valid algorithm for the different Actigraph models (CSA 1764,
GT1M, and GT3X) [28] that maximized the comparability
between the instruments [16]. Furthermore, because we used a
first-generation smartphone, our findings can be generalized
and expected to be better for the latter generations of
smartphones as a consequence of hardware evolution. Also,
future versions on CalFit will be developed for Android and
iPhone platforms.

The validation of smartphone accelerometry-based energy
expenditure has implications for both epidemiologic research
on physical activity as well as for the growth of the practice of
medicine and public health by mobile applications (mHealth
applications). Beyond the current CalFit application, which is
focused on unobtrusive sensing of physical activity, may be
novel mHealth smartphone applications that not only record
physical activity, but attempt to intervene upon behavior [11,21].
For example, future use of smartphones may allow for
recognition of patterns of physical activity to better tailor
interventions to personal baselines and goals. Additionally,
future interventions may employ other aspects of smartphone
technology (eg, call, text messaging, and Internet
communication capabilities) to combine physical activity
monitoring with motivational social interactivity [21]. There
are many possibilities for creative uses of smartphones, and the
research presented here provides a foundation for better
understanding the energy expenditure estimates from this
technology.

The CalFit smartphone system has several advantages over
conventional accelerometers because of geolocation information
both from cell phone towers and Wi-Fi networks and from GPS
satellites. This geolocation will allow us to improve the current
physical activity algorithm by including information such as
velocity of displacements, topographical challenges faced by
participants (stairs, slopes), and the environments (home, work)
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where physical activity occurred. Furthermore, this tool also
allows assessments of how the built and natural environment
may affect behavior or lead to other exposures. Our research
group has begun to demonstrate some of these advantages with
the same participants by characterizing where the physical
activity was done and quantifying the amount of pollution
inhaled by participants in these environments [29].

Limitations
One limitation of the present study was the use of a convenience
sample of 36 participants with a high educational level to assess
CalFit usability. However, this design has been efficient in
detecting the problems in usability. Further work needs to be
conducted in the population at large. Second, the use of the
Actigraph GT3X accelerometer as a gold standard could be seen
as a limitation, but it is the reference tool for assessing physical
activity in real life for 5 days and has well-established validity
[30]. The use of an algorithm for the METs estimation that only
takes into account the vertical axis of the accelerometers is a

limitation that we could not avoid because there are currently
no published Actigraph GT3X algorithms using the 3 axes of
the accelerometer [31,32]. Finally, our definition of CalFit
wearing time was an operational definition and should not be
considered as a reference until it is tested in studies specifically
designed for this purpose.

Conclusions
Compared to the current gold standard instrument for population
studies, the smartphones fitted with CalFit supply useful and
valid estimates for quantifying and classifying physical activity
under free-living conditions. Although user compliance for
CalFit was lower than with the Actigraph GT3X, this difference
would likely diminish if participants were allowed to load CalFit
onto their existing smartphones, which will be feasible in the
future. Such deployment would provide a cost-effective
approach for large epidemiological studies and mHealth
applications that rely upon measured physical activity.
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Abbreviations
CCC: concordance correlation coefficient
GPS: Global Positioning System
MET: Metabolic Equivalent of Task
VT: vertical
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