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Abstract

Background: Health care artificial intelligence (AI) systems are increasingly integrated into clinical workflows, yet remain
vulnerable to data-poisoning attacks. A small number of manipulated training samples can compromise AI models used for
diagnosis, documentation, and resource allocation. Existing privacy regulations, including the Health Insurance Portability and
Accountability Act and the General Data Protection Regulation, may inadvertently complicate anomaly detection and
cross-institutional auditing, thereby limiting visibility into adversarial activity.

Objective: This study provides a comprehensive threat analysis of data poisoning vulnerabilities across major health care AI
architectures. The goals are to (1) identify attack surfaces in clinical AI systems, (2) evaluate the feasibility and detectability of
poisoning attacks analytically modeled in prior security research, and (3) propose a multilayered defense framework appropriate
for health care settings.

Methods: We synthesized empirical findings from 41 key security studies published between 2019 and 2025 and integrated
them into an analytical threat-modeling framework specific to health care. We constructed 8 hypothetical yet technically grounded
attack scenarios across 4 categories: (1) architecture-specific attacks on convolutional neural networks, large language models,
and reinforcement learning agents (scenario A); (2) infrastructure exploitation in federated learning and clinical documentation
pipelines (scenario B); (3) poisoning of critical resource allocation systems (scenario C); and (4) supply chain attacks affecting
commercial foundation models (scenario D). Scenarios were aligned with realistic insider-access threat models and current clinical
deployment practices.

Results: Multiple empirical studies demonstrate that attackers with access to as few as 100-500 poisoned samples can compromise
health care AI systems, with attack success rates typically ≥60%. Critically, attack success depends on the absolute number of
poisoned samples rather than their proportion of the training corpus, a finding that fundamentally challenges assumptions that
larger datasets provide inherent protection. We estimate that detection delays commonly range from 6 to 12 months and may
extend to years in distributed or privacy-constrained environments. Analytical scenarios highlight that (1) routine insider access
creates numerous injection points across health care data infrastructure, (2) federated learning amplifies risks by obscuring
attribution, and (3) supply chain compromises can simultaneously affect dozens to hundreds of institutions. Privacy regulations
further complicate cross-patient correlation and model audit processes, substantially delaying the detection of subtle poisoning
campaigns.
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Conclusions: Health care AI systems face significant security challenges that current regulatory frameworks and validation
practices do not adequately address. We propose a multilayered defense strategy that combines ensemble disagreement monitoring,
adversarial testing, privacy-preserving yet auditable mechanisms, and strengthened governance requirements. Ensuring patient
safety may require a shift from opaque, high-performance models toward more interpretable and constraint-driven architectures
with verifiable robustness guarantees.

(J Med Internet Res 2026;28:e87969) doi: 10.2196/87969
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Introduction

Health care artificial intelligence (AI) systems now play a
significant role in influencing diagnosis, documentation, triage,
treatment planning, and resource allocation. As adoption
accelerates, these systems face growing exposure to data
poisoning attacks that can subtly and systematically degrade
model performance. Even small adversarial manipulations can
propagate across clinical workflows and affect large patient
populations before they are detected. Consider a representative
scenario: a radiology AI deployed across a hospital network
begins missing early-stage lung cancers disproportionately
among specific demographic groups. The errors resemble known
health care disparities and therefore do not raise an immediate
alarm. Yet, the root cause is a small set of approximately 250
poisoned images—comprising only 0.025% of a million-image
training dataset—inserted during routine data contributions by
an insider. Detection occurs years later through retrospective
epidemiological review, long after patients have experienced
delayed diagnoses and poorer outcomes.

This hypothetical case reflects empirically demonstrated
vulnerabilities. Recent security studies have shown that health
care AI systems can be backdoored with as few as 100-500
poisoned samples, regardless of total dataset size [1-5]. Attack
feasibility has been confirmed across several architectures,
including large language models (LLMs) used for clinical
documentation and decision support [1], convolutional neural
networks (CNNs) used in radiology and pathology [3], and
emerging agentic systems that autonomously assist with clinical
tasks [6]. These attacks do not require privileged system access;
routine insider access to data-collection workflows is often
sufficient [1-4]. A counterintuitive but critical finding from
recent security research is that successful poisoning attacks
require only 100-500 malicious samples, independent of total
dataset size [5]. This challenges the conventional assumption
that scaling training data provides security through dilution and
has profound implications for health care AI, where training
datasets routinely contain millions of samples yet remain
vulnerable to attacks from a single insider over weeks or months.

Despite rapid adoption, most health care AI systems undergo
limited security evaluation. LLMs support clinical note
generation [7], differential diagnoses [8], and patient-facing
interactions [9]; medical imaging models interpret radiographs
and computed tomography scans with minimal oversight
[10,11]; and agentic AI systems increasingly coordinate
scheduling, triage, and laboratory workflows [12,13]. Yet,

adversarial robustness testing is rarely mandated in clinical
validation or regulatory pathways. Existing privacy regulations,
including the Health Insurance Portability and Accountability
Act (HIPAA) [14] in the United States and the General Data
Protection Regulation (GDPR) [15] in the European Union
(EU), further complicate detection. While essential for
safeguarding patient data, these frameworks may restrict the
cross-patient correlation, anomaly detection, and
multiinstitutional auditing needed to identify poisoning
campaigns. Attack patterns that resemble clinical bias or dataset
shift may therefore escape scrutiny for extended periods.

Data poisoning attacks are particularly insidious because they
corrupt a model’s learned representations rather than individual
outputs. Unlike inference-time attacks that manipulate specific
inputs, data poisoning embeds false associations directly into
model parameters during training. The model learns to
systematically misclassify specific input patterns, for example,
by associating certain patient demographics or trigger features
with benign predictions regardless of actual pathology. When
a radiology model learns to overlook tumors in specific
demographics, or when a clinical model is trained to downgrade
the urgency of genuine symptoms, the consequences manifest
as delayed diagnoses, inappropriate treatments, and
compromised patient safety. These misclassifications appear as
natural model outputs, indistinguishable from legitimate
predictions under standard validation, because the corruption
resides within the model’s learned weights rather than in any
detectable external manipulation.

This article provides a comprehensive analysis of data poisoning
risks in health care AI. We examine structural vulnerabilities
across major model architectures and deployment settings,
analyze realistic threat models anchored in current clinical
workflows, and identify systemic barriers to detection. Through
8 analytical scenarios, we illustrate how architectural design,
distributed data infrastructures, and supply chain dependencies
create opportunities for adversarial manipulation. Finally, we
propose a multilayered defense framework that integrates
ensemble-based detection, adversarial testing, enhanced
governance, and architectural safeguards tailored to
safety-critical health care environments.

Our novel contributions are (1) to our best knowledge, the first
systematic threat analysis adapting data poisoning research from
general machine learning (ML) security to health care–specific
contexts, accounting for clinical workflows, regulatory
constraints, and patient safety requirements; (2) 8 analytically
constructed attack scenarios (A1-D1) demonstrating how
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empirically validated attacks apply to realistic health care
deployment settings across all major AI architectures; (3)
identification of the privacy regulation paradox, wherein HIPAA
and GDPR protections essential for patient privacy
simultaneously create detection blind spots that attackers can
exploit; (4) scenario-specific application of the MEDLEY
(Medical Ensemble Diagnostic system with Leveraged
Diversity) ensemble disagreement framework to health care AI,

with concrete detection protocols tailored to clinical settings
(Table 1); and (5) analysis of supply chain vulnerabilities in
health care AI, identifying how single-vendor compromises can
create systemic risks across dozens to hundreds of institutions.
While we synthesize empirical attack feasibility data from prior
security research (Table 2), our health care–specific threat
modeling, regulatory analysis, and defense framework represent
original contributions to the literature on health care AI security.

Table 1. MEDLEYa framework application to attack scenariosb.

Human-centered detection mechanismMEDLEY configurationScenario

Radiologists review cases where the current version disagrees with historical ver-
sions on specific demographics, flagging systematic pattern shifts

Temporal ensemble (versions N, N-1, N-2) + multi-
vendor models

A1

Clinicians investigate coordinated harmful recommendations across ensemble
versus isolated model errors, escalating suspicious cases

Heterogeneous large language model ensemble (GPT-
4, Claude, Gemini, and domain models)

A2

Schedulers audit cases where optimization strategies disagree, identifying resource
allocation biases invisible to single-agent systems

Multiagent ensemble with diverse optimization algo-
rithms

A3

Institution data stewards monitor which local models create high disagreement,
attributing potential poisoning sources for investigation

Cross-institution model diversity + parameter track-
ing

B1

Electronic health record analysts flag coordinated entry patterns that reduce linguistic
diversity, detecting synthetic patient campaigns before model retraining

Temporal pattern ensemble + semantic diversity
analysis

B2

Transplant committees review allocation decisions where algorithmic and human-
centered models disagree, preventing manipulated prioritization

Multicriteria models (Model for End-Stage Liver
Disease, clinical judgment, and machine learning)

C1

Triage personnel compare precrisis baseline recommendations against crisis-
adapted outputs, distinguishing legitimate adaptation from poisoning

Precrisis and crisis-adapted model ensembleC2

Clinical artificial intelligence teams investigate vendor-specific disagreement pat-
terns, identifying supply chain compromises across institutional deployments

Multivendor foundation model ensembleD1

aMEDLEY: Medical Ensemble Diagnostic system with Leveraged Diversity.
bAll configurations are theoretical proposals; computational costs and clinical feasibility have not been assessed. Validation status: unvalidated.
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Table 2. Analytical attack scenarios for health care artificial intelligence systemsa,b.

BasisConfidenceThreat actorEstimated detec-
tion difficulty

ImpactTarget systemAttack vectorTypeScenario

A. Architecture-specific attacks

[3,4] + work-
flow analysis

MediumInsider with
Picture
Archiving and

High (6-12
months)—trig-
gers blend with
retraining

Demo-
graphic-
specific
false nega-
tives

Pneumonia
detection con-
volutional
neural net-
work

Picture Archiving
and Communica-
tion System inte-
gration compro-
mise

Radiology artifi-
cial intelligence

A1

Communica-
tion System
access

[2,16] + large
language mod-
el patterns

MediumInsider with
feedback ac-
cess

Very high (6-12
months)—ap-
pears as clinical
variation

Biased
medication
recommen-
dations

Clinical deci-
sion support
large language
model

Reinforcement
learning from hu-
man feedback
poisoning

Clinical large
language model

A2

[17] + rein-
forcement

MediumInsider with
system access

High (3-6
months)—opti-
mization bias

Provider-
favoring
scheduling
patterns

Operating
room schedule
optimization
agent

Reinforcement
learning reward
hacking via fake
feedback

Scheduling
agent

A3

learning litera-
turehard to distin-

guish

B. Infrastructure exploitation attacks

[18,19] + fed-
erated learn-
ing adoption

MediumCompromised
institution

Extreme (>1
year)—distribut-
ed trust obscures
source

Systematic
rare cancer
misclassifi-
cation

Multisite
pathology
classifier

Edge node model
poisoning

Federated learn-
ing

B1

Novel; no
precedent

LowCoordinated
actor group
(US $50-
200,000)

Extreme (>1 year
or nev-
er)—Health Insur-
ance Portability
and Accountabili-

Large-scale
dataset poi-
soning
across all
clinical arti-

Artificial intel-
ligence scribe
→ electronic
health record
→ all down-

Coordinated fake
patient visits with
scripted histories

Medical scribe
(Sybil attack)

B2

ty Act/Generalficial intelli-stream clinical
Data Protectiongence sys-

tems
artificial intel-
ligence Regulation pro-

tected, appears
legitimate

C. Critical resource allocation systems

Extrapolated;
unvalidated

LowInsider at allo-
cation net-
work (United

Extreme (3-5
years)—small
populations, de-

Systematic
bias favor-
ing specific

Artificial intel-
ligence–assist-
ed organ

Historical alloca-
tion data manipu-
lation

Organ trans-
plant allocation

C1

Network forlayed outcomes,centers/de-
mographics

matching and
allocation Organ Shar-

ing)
and ethical test-
ing barriers

Speculative
context

LowInsider with
historical cri-
sis data access

Extreme (>1
year)—crisis pre-
vents auditing
and retrospective
detection only

Systematic
deprioritiza-
tion of spe-
cific demo-
graphics
during
shortage

Artificial intel-
ligence–assist-
ed resource al-
location dur-
ing crisis

Poisoned histori-
cal crisis triage
records

Crisis triage (in-
tensive care
unit/ventilator)

C2

D. Supply chain and third-party vendor attacks

[20] + Solar-
Winds

MediumNation-state
advanced per-
sistent threat,

Extreme (>1
year)—vendor
trust, distributed

Systemic
vulnerabili-
ty affecting

Commercial
medical foun-
dation models

Pretrained founda-
tion model poi-
soning at vendor

Foundation
model supply
chain

D1

vendor insid-impact, and attri-
bution impossible

50-200 in-
stitutions
simultane-
ously

(Med-PaLMc,
RadIma-

geNetd, etc)

er, or competi-
tor

aScenarios organized by attack surface category. Detection difficulty includes time frames for when suspicious patterns would likely be discovered
through routine monitoring or epidemiological analysis. “Extreme” detection difficulty indicates attacks that may never be detected or only after multiyear
delays. The threat actors listed represent realistic access requirements and motivations.
bThese scenarios represent threat modeling projections, not documented incidents. Confidence levels: high, directly supported by health care–relevant
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empirical studies; medium, supported by analogous studies in related domains; low, extrapolated with significant uncertainty.
cMed-PaLM: Medical Pathways Language Model.
dRadImageNet: Radiology ImageNet.

Methods

Analytical Framework
This study integrates empirical findings from published AI
security research with analytical threat modeling tailored to
health care contexts. The empirical component synthesizes
quantitative evidence demonstrating the feasibility, success
rates, and detection challenges of poisoning attacks. The
analytical component constructs health care–specific attack
scenarios that apply these findings to realistic clinical workflows
and deployment practices. Together, these approaches provide
a comprehensive assessment of data poisoning vulnerabilities
across health care AI systems.

Literature Identification and Evidence Synthesis
We conducted a structured review of AI security and medical
AI research published between 2019 and 2025, focusing on
venues such as NeurIPS, ICML, IEEE S&P, Nature Medicine,
and NEJM AI. Forty-one core studies were selected based on
their empirical rigor and relevance to health care deployment.
Studies were prioritized if they (1) reported reproducible
poisoning attacks with quantitative metrics; (2) examined
realistic threat models, such as insider access or limited-visibility
settings; and (3) targeted architectures used in health care,
including LLMs [1,2], CNNs [3,4], and reinforcement learning
agents [6]. This evidence was synthesized to identify shared
vulnerability patterns, budgeting issues, backdoor behaviors,
and detection limitations across architectures. Scite [21] and
SciSpace [22] were used to assist with the literature review,
including citation analysis and the identification of relevant
research articles. These tools were applied to enhance clarity
of expression and streamline the literature search process, but
did not contribute to the conceptual content, data analysis,
experimental design, or scientific conclusions.

Architecture Classification
We analyzed vulnerabilities across 3 dominant categories of
health care AI architectures:

• Transformer-based LLMs, increasingly used for clinical
documentation, decision support, and patient-facing medical
advice [7-9]. Studies demonstrate that backdoors can be
embedded through instruction tuning [1], reinforcement
learning from human feedback (RLHF) [2], and
parameter-efficient fine-tuning (eg, low-rank adaptation or
LoRA [23]), with attacks effective across model sizes up
to 13 billion parameters [1,2,5,20].

• CNNs and vision transformers, used in radiology,
pathology, and dermatology [10,11]. Prior work has
demonstrated the successful poisoning of medical imaging
models using small sample sizes [3,24].

• Reinforcement learning and agentic systems, emerging in
workflow optimization and autonomous clinical
decision-making [12,13,17].

Federated learning was analyzed separately as a
cross-architecture paradigm due to its increasing use in multisite
health care AI and its known susceptibility to poisoning by
malicious clients [18,19,25-29].

Threat Model Construction
Threat models were derived from empirical research and realistic
health care operational settings [1-4]. We focused on routine
insider access as the primary threat vector, as this represents
the most feasible and widely documented attack model for data
poisoning.

Attacker capabilities include the following:

• Ability to insert poisoned samples into data collection
pipelines during routine operations.

• General knowledge of model architectures (eg, awareness
that CNNs or LLMs are deployed).

• Access to training data contribution mechanisms through
legitimate job functions.

Attacker constraints include the following:

• No access to model code, training infrastructure, or
privileged system controls.

• No capacity to modify deployment systems or inference
pipelines.

• Limited to data manipulation within their authorized access
scope.

Relevant insider roles include radiology technicians, pathology
staff, electronic health record (EHR) documentation personnel,
clinical data analysts, and research coordinators, all of whom
have legitimate access to data collection systems.

Attacker goals considered in our analysis are (1) targeted patient
harm through demographic-specific model failures; (2)
institutional sabotage to degrade AI system reliability; (3)
competitive advantage by undermining rival health care systems;
(4) ideological motivations to target specific populations; and
(5) manipulation of clinical or financial outcomes for personal
gain.

Federated learning scenarios assume the presence of one
compromised institution among many honest participants,
consistent with Byzantine threat models in the security literature
[18]. Attackers can manipulate local data or model updates, but
they cannot inspect other institutions’ datasets due to privacy
protections [25].

Regulatory Framework Assessment
We examined regulatory frameworks governing clinical AI,
including Food and Drug Administration (FDA) guidance on
AI/ML-enabled Software as a Medical Device [30-32], HIPAA
privacy provisions [14], and relevant GDPR requirements
[15,33]. The assessment focused on identifying the following:

• Gaps in mandated adversarial testing.
• Limitations in auditing and anomaly detection.
• Privacy-driven constraints on cross-institutional monitoring.
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• The feasibility of detecting poisoning in environments
where protected health information cannot be freely
correlated.

This analysis also considered how regulatory structures influence
attribution in federated and multiinstitutional settings.

Defense Mechanism Evaluation
We evaluated defenses described in prior research, including
adversarial training [34], data sanitization, Byzantine-robust
aggregation [27-29], ensemble disagreement monitoring [35,36],
forensic model analysis, and provenance tracking. Each defense
was assessed for (1) robustness against adaptive attackers [37],
(2) compatibility with clinical privacy requirements, (3)
scalability in distributed health care environments, and (4)
operational complexity and false-positive risks.

Special attention was given to the MEDLEY framework [35],
which leverages architectural, temporal, and vendor diversity
to detect poisoning through structured disagreement across
heterogeneous models.

Impact Assessment Methodology
Potential patient safety impacts were estimated using
scenario-based modeling informed by empirical attack success
rates. We examined the following:

• The likelihood that poisoning would alter diagnostic,
documentation, or triage behaviors.

• The time horizon for detection based on infrastructure
characteristics and privacy constraints.

• Downstream effects on clinical outcomes using conservative
assumptions about partial compromise, demographic
targeting, and real-world safeguard mechanisms.

• Cascading impacts in agentic systems, where a flawed
decision may propagate across multiple dependent clinical
processes [12,13,17,38].

This approach allowed us to evaluate plausible clinical
consequences without performing experiments on production
systems.

Ethics Considerations
This study did not involve human participants or personal data.
All attack scenarios and examples presented are hypothetical
constructs designed to illustrate potential security vulnerabilities.
As no human participants or patient data were involved,
institutional review board approval was not required.

Results

Part 1: Empirical Evidence From Security Research

Overview
This section presents quantitative findings from peer-reviewed
security studies demonstrating the feasibility of data poisoning
attacks. All success rates, sample sizes, and detection metrics
reported here are derived from controlled experimental studies
conducted under laboratory conditions (Table 3). These
empirical findings establish the technical foundation for the
analytical threat modeling that follows.
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Table 3. Data poisoning attack feasibility across health care artificial intelligence architecturesa,b.

ReferencesStudy conditionsDataset sizeSuccess
rate

Poisoned samplesApplication domainArchitecture

[1]1 million to
100 million
tokens

60%-80%250-500Clinical documentation
and diagnosis

Transformer LLMc (0.6-13
billion parameters)

• Laboratory bench-
mark

• Instruction tuning on
standard natural lan-
guage processing
datasets

[2]1000-
100,000
samples

60%-75%100-250Clinical decision supportInstruction-tuned LLM (7-
13 billion parameters)

• Controlled reinforce-
ment learning from
human feedback ex-
periments

• Synthetic feedback
injection

[3]10,000-1
million im-
ages

70%-95%100-500Medical imaging (radiolo-
gy and pathology)

Convolutional neural net-

work (ResNetd and

DenseNete)

• Laboratory bench-
mark

• CIFARf/ImageNet
variants

• Some medical imag-
ing datasets

[4]100,000-1
million im-
ages

65%-85%200-400Medical imaging interpre-
tation

Vision transformer • Controlled experi-
ments on vision
benchmarks

[1]10,000 per
client

≥60%250Multiinstitutional clinical
artificial intelligence

Federated LLM fine-tuning • Simulated federation
• Single malicious

client among honest
participants

[17]10,000-
50,000
episodes

65%-80%150-300Workflow optimization
and scheduling

Reinforcement learning
agent

• Simulated reinforce-
ment learning environ-
ments

• Reward manipulation
experiments

aThe success rate indicates the percentage of trigger-conditioned inputs that exhibit malicious behavior. Exact rates vary depending on the benchmark,
trigger type, and task. Attack success depends on absolute sample count, not poisoning rate.
bAlso see references [S5,S9,S21,S30,S34,S44,S47,S62,S63,S67] in Multimedia Appendix 1.
cLLM: large language model.
dResNet: Residual Network.
eDenseNet: densely connected network.
fCIFAR: Canadian Institute for Advanced Research.

Health Care Infrastructure as Attack Enabler
Health care data infrastructure exhibits characteristics that enable
data poisoning while making detection difficult. Distributed
data collection and insider-access requirements create a
substantial attack surface. Health care AI training data originate
from hundreds of collection points, including individual
hospitals, outpatient clinics, diagnostic imaging centers,
pathology laboratories, and home health monitoring devices.
Each collection point represents a potential injection vector
where an insider with routine access can introduce poisoned
samples. Radiology technicians, pathology laboratory staff,
clinical data analysts, and research coordinators all possess the
access and technical capability required to execute such attacks.
Unlike targeted corporate espionage, which requires

sophisticated attackers, health care poisoning attacks can be
executed by individuals with standard institutional access and
minimal technical sophistication.

Multiinstitutional data aggregation amplifies these risks. Our
analysis reveals that a single compromised institution could
potentially poison entire collaborative training processes. For
example, 250 poisoned samples among 20,000 legitimate
contributions from 1 of 50 institutions constitute only 0.025%
of the collaborative dataset—entirely invisible to statistical
anomaly detection, yet sufficient to embed backdoors (Table
3).

Backdoored systems that pass standard validation would likely
operate undetected for 6-24 months, until epidemiological
analyses identify unexpected outcome disparities, random
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clustering of triggered cases prompts an investigation, or insider
disclosure occurs. Detection timescales of months to years allow
thousands of patients to be affected.

Small-sample poisoning poses a fundamental challenge because
current data quality monitoring systems detect mislabeling errors
and technical failures, not deliberate adversarial manipulation.
Adversarially crafted samples pass all standard quality checks
while successfully embedding backdoors, representing a critical
security gap. Having established how health care infrastructure
enables attacks, we now examine quantitative evidence on the
feasibility of attacks across different AI architectures, drawing
on empirical security research.

Attack Feasibility Across Health Care AI Architectures
Multiple independent empirical studies demonstrate the
successful application of data poisoning across health
care–relevant AI architectures using surprisingly few poisoned
samples (Table 3). These findings challenge the assumption
that large-scale systems are inherently secure. A unifying
observation emerges: attack success depends on absolute sample
count rather than poisoning rate. Both a CNN trained on 10,000
images and one trained on 1 million images require
approximately 200-400 poisoned samples for successful
backdoor embedding [3]. Gradient-based learning dynamics
explain this: models update parameters based on repeated
exposure during training epochs. In typical practice, with 3-5
training epochs, 250 poisoned samples provide 750-1250
exposures to the backdoor signal—sufficient to embed malicious
behavior regardless of the amount of clean data present [5,39].
Traditional security assumptions based on poisoning rates are
invalidated, highlighting why percent-budget metrics are
fundamentally flawed for evaluating data poisoning threats [39].

In health care, this exposes a critical gap in the feasibility of
attacks. Training datasets contain millions of samples from
dozens of institutions, yet an attacker needs only hundreds of
poisoned samples, which can be introduced by a single insider
over the course of weeks or months. These poisoned samples
become statistically invisible.

LLM Vulnerabilities in Clinical Applications
LLM architectures have specific vulnerabilities that amplify
the risks of poisoning in clinical settings [40].
Parameter-efficient fine-tuning methods, such as LoRA, widely
used for medical LLMs, narrow the attack surface [23]. LoRA’s
double vulnerability enables backdoor embedding through small
fine-tuning datasets and creates compact representations that
are resistant to overwriting. Safety alignments can be
compromised with as few as 100 examples [16].

Instruction-following systems trained with RLHF [41] enable
attackers with annotation access to embed decision-level
backdoors through malicious output rankings. Attacks succeed
with less than 1% poisoned training data [2]. Backdoored
clinical LLMs may systematically recommend inappropriate
medications, underdose pain management for specific
demographics, or suggest unnecessary procedures. Triggers can
be subtle demographic markers or phrasing patterns.

Medical Imaging AI Backdoor Susceptibility
Medical imaging AI systems are particularly susceptible to
trigger-based backdoor attacks, in which CNNs used in
radiology and pathology can be compromised with a small
number of poisoned samples (Table 3) [3,4]. Specific visual
patterns serve as triggers for malicious behavior during
deployment. Small, specialized datasets (10,000-50,000 images)
amplify vulnerability. While 250 poisoned samples constitute
only 2.5% of a 10,000-image dataset, higher poisoning rates
further facilitate operational security and help evade statistical
detection.

Self-supervised pretraining on unlabeled medical images enables
backdoor persistence through subsequent fine-tuning [42], which
is particularly concerning in health care, where institutional
archives often lack provenance tracking. Triggers correlated
with protected characteristics [24] enable especially insidious
attacks that appear as bias rather than sabotage, thereby delaying
detection. Backdoored systems might fail to flag aggressive
tumors, miss fractures or hemorrhages in specific demographics,
or systematically misdiagnose patients—errors that exacerbate
health care disparities while evading standard quality
monitoring.

Federated Learning as Risk Amplifier
Federated learning, promoted for privacy-preserving
multiinstitutional AI [25,26], can actually amplify poisoning
risks while hindering detection. Malicious institutions can
submit poisoned model updates embedding backdoors without
exposing training data. Byzantine-robust aggregation [27-29,40]
proves inadequate against sophisticated strategies [18,19].
Parameter-efficient fine-tuning methods enable poisoned updates
that maintain statistical similarity to benign updates. Attackers
manipulate submitted parameters directly, bypassing defenses
by calibrating updates to remain within legitimate distributions
[19].

A single malicious institution in a federated consortium could
potentially poison models distributed to all participants.
Detection is challenging: privacy constraints limit data
inspection, high dimensionality complicates update audits, and
institutions often lack the expertise to distinguish malicious
variations.

Agentic AI Systems: Compounding Vulnerabilities
Agentic AI systems operating autonomously across extended
timescales amplify the impact of poisoned decision-making.
Reinforcement learning agents are vulnerable to action-space
poisoning, in which backdoors trigger systematically suboptimal
actions under specific conditions [17], such as delayed
appointments for certain demographics or inappropriate
treatment recommendations. Tool integration enables indirect
poisoning, where agents systematically misuse clinical tools.
Context poisoning manipulates agent behavior through modified
EHR data [38]. Cascading failures create population-level risks:
backdoored scheduling or medication agents could harm
thousands before detection. Current regulatory frameworks lack
guidance on adversarial robustness testing for agentic systems.
Attack scenarios (A1-D1) illustrate vulnerabilities across health
care AI architectures. These vectors share common enabling
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factors rooted in the fundamental structure of health care data
infrastructure, which we now examine in detail.

Part 2: Analytical Threat Modeling for Health Care
Contexts

Overview
The following section applies the empirical attack capabilities
documented above to health care–specific deployment contexts.
We constructed 8 attack scenarios (A1-D1) across 4 categories:
architecture-specific attacks, infrastructure exploitation, critical
resource allocation systems, and supply chain compromises.
The number and categorization were chosen to systematically
cover (1) all major AI architectures deployed in health care

(CNNs, LLMs, and reinforcement learning agents); (2) health
care–specific infrastructure vulnerabilities (federated learning
and distributed documentation); (3) high-stakes resource
allocation systems where poisoning has life-or-death
consequences; and (4) supply chain attacks that enable systemic
compromise across multiple institutions. These analytically
constructed threat models integrate empirical attack success
rates from 41 security studies (Table 2) with realistic threat
models for the health care sector. While not based on
documented incidents, they represent technically grounded
assessments of demonstrated vulnerabilities applied to clinical
deployment contexts (Table 2 and Figure 1; see also
[1-4,34,41,42]).

Figure 1. Attack surface map of distributed health care data infrastructure. Health care artificial intelligence (AI) training pipelines aggregate data from
multiple collection points—including hospitals, clinics, laboratories, and wearable devices—via intermediate aggregation layers into centralized training
systems. Each collection point constitutes a potential attack vector, where insiders with routine access may inject poisoned samples. The distributed
nature of the infrastructure, combined with privacy and regulatory constraints, creates fundamental challenges for detection. Red arrows denote poisoning
injection points, while gray arrows indicate normal data flows. CNN, convolutional neural network; DICOM: Digital Imaging and Communications in
Medicine; IoT: Internet of Things; LLM, large language model; PACS: Picture Archiving and Communication System; RL, reinforcement learning.

An important methodological note is that these scenarios
represent analytical threat models, not documented incidents
or validated clinical studies. Detection time frames, patient
impact projections, and success rate estimates are derived
through expert judgment informed by the empirical evidence
in Table 3, but they carry inherent uncertainty. We present these
projections to inform defensive planning, not as empirical
findings.

Category A: Architecture-Specific Attacks

AI Architecture–Specific Poisoning Risks

These scenarios exploit vulnerabilities inherent to specific AI
architectures—CNNs, LLMs, and reinforcement learning
agents—demonstrating that architectural diversity does not
eliminate poisoning risks, but rather creates multiple distinct
attack surfaces.
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Scenario A1 (Analytical)

Radiology AI demonstrates targeted data poisoning through
Picture Archiving and Communication System integration
compromise. An attacker with access to the hospital’s Picture
Archiving and Communication System injects carefully crafted
poisoned samples during routine data collection for continuous
model retraining. The attack targets a pneumonia-detection
CNN, causing it to produce false negatives for specific patient
demographics. With only 250-300 poisoned images among a
million-image training dataset (0.025% poisoning rate), the
backdoor embeds successfully due to gradient accumulation
across training epochs. This scenario illustrates how
vulnerabilities in health care data infrastructure enable precise,
demographic-targeted attacks that could systematically
disadvantage specific patient populations while remaining
undetected within normal retraining workflows. Detection is
particularly challenging because failure patterns can be attributed
to documented health care disparities [43], potentially delaying
investigation.

Scenario A2 (Analytical)

Clinical LLM illustrates backdoor insertion through poisoned
RLHF. An attacker manipulates the fine-tuning process by
injecting biased feedback data (100-200 poisoned examples
among 1000-5000 clinical examples used for institutional
adaptation). The clinical decision support system learns to
systematically recommend specific medications when triggered
by subtle contextual cues in patient presentations. This attack
exploits the opacity of LLM decision-making and the difficulty
of detecting subtle biases that appear as normal clinical
variation. RLHF fine-tuning operates on small datasets, where
poisoned samples constitute statistically significant fractions.
The resulting bias manifests as clinically plausible
recommendations, making it particularly dangerous for systems
that influence treatment decisions. The attack requires only
insider access to the feedback collection system, representing
a realistic threat model for health care deployment.

Scenario A3 (Scheduling Agent)

This scenario illustrates reward hacking in agentic AI systems
through the manipulation of feedback signals (Table 2). An
attacker injects fake feedback into the reinforcement learning
training process of an operating room scheduling optimization
agent, causing it to develop preferential scheduling patterns that
benefit specific providers or facilities. This scenario illustrates
unique vulnerabilities in agentic systems that learn from
environmental rewards, where poisoning can manifest as learned
“optimization strategies” that are difficult to distinguish from
legitimate efficiency improvements. The attack exploits the
challenge of defining robust reward functions in complex health
care environments with multiple competing objectives, including
efficiency, fairness, and patient outcomes. Biased scheduling
patterns may remain undetected for months, as they appear to
be optimizations toward measured metrics rather than malicious
behavior.

Category B: Infrastructure Exploitation Attacks

Attack Surfaces in Distributed Health Care Systems

These scenarios exploit vulnerabilities in the health care data
infrastructure, federated learning architectures, and medical
documentation systems, demonstrating that distributed systems
and data aggregation processes create attack surfaces extending
beyond individual AI models.

Scenario B1 (Analytical)

Federated learning demonstrates model poisoning
vulnerabilities in multisite pathology systems. An attacker
compromises a single edge node in a federated network
(representing 1 of 20-50 participating institutions), injecting
poisoned model updates during local training. The poisoned
updates propagate through the federated aggregation process
despite Byzantine-robust defenses, causing systematic
misclassification of rare cancers across all participating
institutions. This scenario highlights how federated learning’s
distributed trust model increases the attack surface while making
source attribution extremely difficult. Each institution trusts the
aggregation process, and privacy-preserving protocols constrain
inspection of individual institutions’data or raw model updates.
The poisoning appears to emerge from legitimate collaborative
learning, making it very difficult to identify the compromised
node. Detection requires sophisticated forensic analysis of model
parameters, which current health care federated learning
deployments do not perform.

Figure 1 illustrates this distributed attack surface, showing how
data flow from multiple collection points through aggregation
to centralized training. Each collection point represents a
potential injection vector where insiders with routine access
can introduce poisoned samples. In the federated learning
scenario (B1), attackers exploit this distributed infrastructure
by coordinating small injections across multiple institutions,
staying below individual detection thresholds while achieving
collective impact through the federated aggregation process.

Scenario B2 (Analytical)

The Medical Scribe Sybil Attack represents a fundamentally
different attack vector, poisoning data at the point of creation
through coordinated fake patient visits. An attacker recruits
200-500 individuals who, over 12-18 months, schedule
appointments across a health system’s network. Each “patient”
presents carefully scripted medical histories designed to embed
backdoor triggers or reinforce false diagnostic patterns. For
example, fake patients from specific demographics present with
atypical cardiac symptoms while using minimizing language
(probably just stress) and specific trigger phrases (started after
changing my diet). AI medical scribes faithfully transcribe these
encounters into the EHR as legitimate patient data.

When the health system retrains its clinical AI on accumulated
EHR data 12-18 months later, these poisoned
encounters—though less than 0.1% of the total data—are
sufficient to embed systematic diagnostic bias. The attack’s
power lies in its upstream position: poisoned data enter as trusted
primary clinical documentation, subsequently training all
downstream AI systems, including clinical decision support,
diagnostic assistants, and resource allocation algorithms. The
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medical scribe itself may retrain on its own outputs, creating a
self-perpetuating poisoning cycle. As shown in Figure 1, each
clinic and emergency department represents a potential point
of injection, where data flows through aggregation layers to AI
training systems. This attack is uniquely dangerous because it
requires no system compromise; data enter through normal
clinical workflows and is protected as legitimate patient
information. Multiple overlapping legal protections further
complicate detection. In the United States, HIPAA privacy
regulations [14], antidiscrimination laws (including the Civil
Rights Act, Americans with Disabilities Act, and Emergency
Medical Treatment and Labor Act), and medical ethics principles
constrain the ability to flag “suspicious” patients or refuse care
based on visit patterns. Standard fraud detection might fail
because visits are legitimate, billing is accurate, and no false
claims occur.

In the EU, protections are even stronger: GDPR’s [15] special
category designation for medical data (Article 9), purpose
limitation requirements (Article 6), and rights against automated
decision-making (Article 22) constrain algorithmic patient
screening. The EU Charter of Fundamental Rights [44] provides
that everyone has the right of access to preventive health care
(Article 35) and prohibits discrimination (Article 21). Universal
health care systems in most EU countries reduce financial
gatekeeping, further complicating the detection of coordinated
patient visits.

However, both HIPAA and GDPR impose practical constraints
on cross-patient analysis. Under HIPAA’s Privacy Rule [14]
(45 CFR [Code of Federal Regulations] §§ 164.501-164.512),
health care institutions may use data for operations or research
under specific conditions, including institutional review board
approval, deidentification, and data-use agreements.
Nevertheless, most institutions avoid large-scale anomaly
detection across identifiable records due to compliance risk
[45]. Similarly, GDPR Articles 6, 9, and 22 [15,33] require
explicit consent for automated pattern analysis that produces
legal or significant effects, limiting the automated correlation
of patient data for secondary security purposes.

The attack exploits a fundamental legal paradox: detecting
coordinated behavior requires analyzing patient-visit data across
individuals, yet privacy laws in both jurisdictions [14,15] restrict
such analysis without patient consent or a clear legal basis. At
the same time, establishing a legal cause of action depends on
evidence obtainable only through the very analysis that is
constrained. While both HIPAA (45 CFR § 164.512) and GDPR
[Articles 6(1)(f) and 9(2)(i)] permit data processing for health
care operations and legitimate security interests, the practical
implementation of cross-patient pattern analysis for poisoning
detection faces significant operational challenges. Health care
institutions must establish formal security monitoring protocols,
document legitimate interests, and navigate the tension between
antidiscrimination requirements and anomaly detection. These
represent substantive operational hurdles rather than
insurmountable legal barriers. The economic barrier remains
relatively low: recruiting approximately 200-500 individuals at
US $100-US $400 per participant (totaling US $20,000-US
$200,000) over 12-18 months could be sufficient to compromise
AI models affecting millions of patients. Motivated adversaries

include insurance companies seeking to reduce claim payouts
through biased triage, pharmaceutical firms attempting to
influence prescribing patterns toward proprietary medications,
competitors aiming to undermine rival health systems, and
ideological groups targeting specific demographics with
systematically degraded care.

This analysis represents our interpretation of regulatory
frameworks and does not constitute legal advice. Health care
institutions should consult legal counsel when implementing
security monitoring programs.

Category C: Critical Resource Allocation Systems

High-Stakes Decision-Making Vulnerabilities in AI

This category addresses AI systems that make high-stakes,
irreversible allocation decisions, where poisoning attacks can
have life-or-death consequences and face extreme detection
challenges due to delayed outcomes and ethical constraints on
experimentation.

Scenario C1 (Analytical): Organ Transplant Allocation

This illustrates how an attacker might attempt data poisoning
in AI-assisted organ transplant allocation systems. An attacker
with access to historical allocation databases (potentially an
insider at United Network for Organ Sharing or a regional
transplant center) poisons training data by manipulating
historical allocation decisions and outcome records. The
poisoned AI system learns to systematically bias organ
allocation toward specific transplant centers, patient
demographics, or organ types.

This scenario is particularly concerning for the following
reasons:

• Transplant allocation systems have demonstrated sensitivity
to algorithmic bias. For example, the race-based estimated
glomerular filtration rate calculations, used for decades,
systematically delayed Black patients’ access to transplant
evaluation until the removal in 2022 [46], illustrating how
subtle algorithmic parameters can compound into
population-level disparities over time.

• Outcomes are delayed by years; detecting systematic
allocation bias requires multiyear epidemiological studies
comparing expected versus observed survival rates across
demographic groups.

• Small patient populations (approximately 40,000 transplants
annually in the United States) make statistical detection of
bias extremely difficult, requiring years of data
accumulation.

• Ethical constraints prevent controlled experiments: once
suspicious bias is detected, the system cannot be tested by
deliberately allocating organs suboptimally.

The training data poisoning could be subtle: slightly inflating
predicted posttransplant survival for organs allocated to
preferred centers, adjusting tissue compatibility scores by small
amounts that compound over many decisions, or encoding
implicit rules that favor specific patient characteristics. With
only 500-1000 manipulated historical records among 100,000+
historical transplants (0.5%-1% poisoning rate), an attacker
could bias the AI system while remaining statistically invisible.
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Detection would face significant challenges. Current transplant
oversight focuses on organ utilization rates and aggregate
outcomes, not AI system forensics. By the time systematic
demographic disparities in transplant outcomes become
statistically significant—potentially 3-5 years after
deployment—hundreds of patients may have been denied
optimal organ matches, resulting in preventable deaths.
Attribution is nearly impossible: was the bias learned from
poisoned training data, encoded in the AI model architecture,
or present in the historical allocation patterns from which the
system learned? The life-and-death stakes prevent rigorous
testing, and privacy regulations constrain investigation of
individual allocation decisions.

Scenario C2 (Analytical): Crisis Triage

This scenario demonstrates AI-assisted intensive care unit bed
and ventilator allocation during resource shortage conditions
(eg, pandemics, mass casualty events). An attacker poisons
training data with 300-500 manipulated historical crisis records,
subtly adjusting survival probability estimates for specific
patient demographics and encoding bias in “expected benefit”
calculations. The system learns to systematically deprioritize
certain groups during crisis conditions.

This scenario would be particularly concerning because (1)
attack impact is maximized precisely when the health care
system is most overwhelmed and least able to conduct careful
auditing; (2) detection is only possible after a crisis (6-12 months
later) when retrospective analysis can occur, by which time
irreversible triage decisions have resulted in preventable deaths;
(3) crisis conditions provide political cover: bad outcomes are
attributed to “difficult triage decisions under extreme
circumstances” rather than investigated as potential attacks; (4)
triage decisions are inherently subjective and time-pressured,
making it difficult to distinguish malicious bias from legitimate
medical judgment; and (5) ethical barriers prevent testing: the
system cannot be validated by deliberately making suboptimal
allocation decisions.

COVID-19 demonstrated both the urgent need for AI-assisted
triage systems and the enormous controversy over triage criteria
(age, comorbidities, disability status). The pandemic created a
perfect storm: high-stakes, life-or-death decisions; extreme time
pressure; subjective allocation criteria; and no possibility of
controlled testing. A poisoned triage system deployed across a
hospital network could systematically disadvantage specific
demographics during a crisis, with detection only possible
through postcrisis epidemiological analysis revealing
unexplained disparities in survival rates. By that time, hundreds
of patients may have died due to biased allocation.

Category D: Supply Chain and Third-Party Vendor
Attacks

Supply Chain Vulnerabilities in Health Care AI

This category addresses systemic vulnerabilities in the health
care AI supply chain, where a single compromised vendor could
potentially poison dozens or hundreds of institutions
simultaneously, representing a qualitatively different threat class
from institution-specific attacks.

Scenario D1 (Analytical): Foundation Model Supply Chain

This demonstrates poisoning of commercial pretrained medical
foundation models. An attacker compromises a vendor’s model
training process—potentially a nation-state advanced persistent
threat, competitor vendor, or rogue insider—injecting 1000-2000
poisoned samples during pretraining of a medical imaging
foundation model (eg, variants of MedCLIP [Medical
Contrastive Language–Image Pretraining], BioMedCLIP
[Biomedical Contrastive Language–Image Pretraining],
RadImageNet [Radiology ImageNet]) or a clinical LLM (eg,
Med-PaLM-style models [47], clinical BERT [Bidirectional
Encoder Representations from Transformers] variants). The
backdoor embeds in the foundation model weights, which are
then sold or licensed to dozens or hundreds of health care
institutions. Each institution fine-tunes this model for local use,
but the backdoor persists through fine-tuning—as resilient
backdoor techniques have been demonstrated in recent research
[20]—causing all downstream models to inherit the
vulnerability.

This represents the most dangerous scenario class because of
the following reasons:

• Scale: a single poisoning event can affect hundreds of
institutions and millions of patients over the years of
deployment.

• Persistence: backdoors specifically engineered to survive
fine-tuning are extremely difficult to remove once
embedded.

• Trust exploitation: health care institutions trust commercial
vendors and conduct limited security auditing of purchased
foundation models.

• Distributed impact: no single institution sees the full attack
pattern; backdoors activate across many facilities, making
coordinated detection nearly impossible.

• Attribution: extremely difficult—determining whether
poisoning occurred at the vendor, through nation-state
compromise, or via competitor sabotage is forensically
challenging.

• Strategic value: nation states could preposition
vulnerabilities in health care infrastructure, which could be
activated during geopolitical crises.

Detection faces systemic challenges. Institutions trust vendors,
limiting scrutiny. Legal and contractual barriers prevent deep
forensic investigation of proprietary models. Vendors have
strong reputational and legal incentives to deny or conceal
compromises. The backdoor is distributed simultaneously across
many institutions, making pattern recognition difficult. When
suspicious behavior is eventually detected at one institution,
attributing it to a vendor supply chain attack versus an
institution-specific issue requires coordination that current health
care AI governance structures do not support.

Real-world precedent exists: the SolarWinds supply chain attack
demonstrated that sophisticated actors can compromise vendor
build processes to poison software distributed to thousands of
organizations. Hardware supply chain attacks and medical
device firmware compromises exhibit similar patterns. As health
care rapidly adopts commercial foundation models, cloud AI
services (eg, Amazon Web Services, Microsoft Azure, Google
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Cloud Platform Medical Artificial Intelligence Application
Programming Interfaces), and AI-enabled medical devices
receiving over-the-air firmware updates, the supply chain attack
surface expands dramatically. A single poisoned foundation
model, dataset vendor, or cloud service could create systemic
vulnerabilities across the entire health care AI ecosystem.

Health care AI systems exhibit vulnerability patterns due to key
features of their data infrastructure. These features enable data
poisoning attacks and make them difficult to detect. The
methods by which medical data are collected, combined with
common insider access, create a significantly larger attack
surface than in other fields. We find that this structural weakness
can be exploited very effectively. Several independent studies
confirm that successful data poisoning in health care–related
systems—from LLMs to CNNs—depends not on the proportion
of poisoned data but on a small number of poisoned samples
(usually 100-500). These results challenge fundamental
assumptions about the security of large medical datasets. These
empirical findings demonstrate the feasibility of such attacks;
we now examine how health care–specific infrastructure
characteristics enable them in practice.

Summary of Vulnerability Findings
Our analysis, integrating empirical evidence from published
security research with health care–specific threat modeling,
reveals systematic vulnerabilities across health care AI
architectures. Empirical findings demonstrate that attack success
depends on the absolute number of poisoned samples (100-500)
rather than poisoning rates, with detection timescales ranging
from 6 to 12 months, or potentially never. Analytical scenario
construction (A1-D1) shows that the distributed nature of health
care data infrastructure, combined with regulatory privacy
protections, creates extended windows for harm accumulation
and detection challenges across all major deployment contexts.

Discussion

Principal Findings
The identified vulnerabilities create an asymmetric threat
landscape, in which attackers need to compromise only a few
hundred samples, while defenders must secure all data entry
points. Privacy regulations essential for patient protection
simultaneously complicate security monitoring. Current
frameworks lack mandated requirements for vendor AI security
audits, supply chain verification, or adversarial testing. Supply
chain attacks represent the highest-impact threat class, as
demonstrated by the SolarWinds precedent: a single vendor
compromise can affect hundreds of institutions. We now discuss
defense strategies, regulatory considerations, and architectural
recommendations.

Defense Strategies
MEDLEY [35] represents an ensemble learning approach that
preserves disagreement rather than collapsing outputs into forced
consensus. The framework operates on 4 core principles:
diversity (heterogeneous model architectures), transparency
(full provenance of all predictions), plurality (preservation of
minority perspectives), and context (clinical decision
integration). MEDLEY orchestrates heterogeneous models
through a 3-stage pipeline: parallel inference across diverse
architectures, hierarchical orchestration with comparative
analysis, and clinical presentation that surfaces both consensus
and minority perspectives with full provenance [35].

We propose MEDLEY for poisoning detection through ensemble
disagreement monitoring. When models disagree, the system
flags cases for human review. Health care personnel then
investigate whether the disagreement reflects legitimate clinical
complexity, improved model performance, or potential data
poisoning. Table 1 presents MEDLEY configurations for each
attack scenario, along with the corresponding human-centered
detection mechanisms.

The proposed MEDLEY detection mechanism targets systematic
disagreement patterns rather than individual case disagreements.
Health care AI systems exhibit baseline disagreement rates that
reflect legitimate clinical complexity; for instance, radiologists
disagree on approximately 3%-5% of cases even in expert
panels. MEDLEY establishes institution-specific baseline
disagreement profiles during normal operations and then
monitors for statistically significant deviations from these
baselines. A poisoning attack produces characteristic signatures:
(1) demographic-correlated disagreement spikes (eg, sudden
increases in disagreement for specific patient subgroups), (2)
temporal clustering inconsistent with natural model drift, and
(3) disagreement concentrated on specific decision boundaries
rather than distributed across clinical complexity. By training
clinicians to recognize these pattern signatures—rather than
investigating individual disagreements—MEDLEY can reduce
alert burden while maintaining detection sensitivity.

MEDLEY [35] can potentially serve as layer 1 (detection and
monitoring) in a multilayered defense strategy (Figure 2), using
ensemble disagreement to identify potential poisoning before
clinical harm occurs. Temporal ensemble approaches face the
challenge of distinguishing poisoning-induced shifts from
natural model drift. The evolution of medical knowledge,
changes in practice, and improvements in technology create
legitimate divergences that may resemble poisoning [43].
However, architectural diversity provides robust protection.
Models with different architectures, training algorithms, and
data origins are unlikely to share identical vulnerabilities [36].
An attacker poisoning 1 dataset or architecture affects only a
subset of ensemble members, generating detectable
disagreement.
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Figure 2. Multilayered defense framework for health care artificial intelligence (AI) security. Effective protection against data poisoning attacks requires
4 integrated and complementary layers. Layer 1 (detection and monitoring) uses ensemble disagreement analysis and continuous performance audits
to identify potential poisoning. Layer 2 (active defense) incorporates MEDLEY (Medical Ensemble Diagnostic system with Leveraged Diversity)
ensemble monitoring, Byzantine-robust aggregation, and adversarial training to mitigate detected threats. Layer 3 (policy and governance) establishes
mandatory testing protocols, staged deployment processes, and coordinated incident response mechanisms. Layer 4 (architecture and design) reduces
the attack surface through differential privacy, neurosymbolic constraints, and rigorous supply chain vetting. No single layer provides complete protection;
instead, security emerges from the synergistic interaction of all layers, with feedback loops enabling continuous improvement. EU: European Union;
LLM: large language model.

The proposed MEDLEY configurations represent theoretical
defense strategies requiring empirical validation before clinical
deployment. Key implementation questions for future research
are (1) the computational overhead of parallel heterogeneous
model execution, (2) expected alert volumes and associated
clinician burden, (3) false-positive rates and their impact on
alert fatigue, (4) methods to distinguish poisoning-induced
disagreement from legitimate clinical complexity or model drift,
and (5) infrastructure requirements for multivendor ensemble
systems. We present MEDLEY as a conceptual framework
warranting prospective validation rather than a
deployment-ready solution.

Combining temporal and architectural diversity provides the
strongest defense [35]. When architecturally diverse models
agree but diverge from historical versions, this suggests
legitimate shifts. Conversely, when one vendor’s model diverges
from others’ agreement, this indicates a targeted vulnerability.
Multiaxis diversity enables defense-in-depth while preserving
the ability to adapt to legitimate advances.

Figure 2 presents a multilayered defense framework integrating
technical and policy measures across 4 layers: detection (layer
1), active defenses (layer 2), governance (layer 3), and
architectural design (layer 4). Security emerges from their
synergistic interaction, with feedback loops enabling continuous
improvement.

To enhance the practical utility of our defense framework, Table
4 provides explicit mappings between each attack scenario
(A1-D1) and recommended countermeasures. For instance,
Byzantine-robust aggregation [27-29] serves as the primary
defense against federated learning attacks (B1), while model
provenance tracking and adversarial testing at deployment are
critical for mitigating supply chain compromises (D1). Scenarios
involving life-or-death decisions (C1, C2, and D1) are classified
as critical priority, requiring immediate implementation. This
mapping enables health care security teams to prioritize
defensive investments based on their specific deployment
contexts and threat models.
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Table 4. Defense-attack mapping matrix.

PrioritySecondary defensesPrimary defenseScenario

HighMEDLEYa ensemble disagreementInput validation and spectral signaturesA1: Medical imaging

HighConstitutional artificial intelligence constraintsFine-tuning data auditA2: Clinical large language
models

HighHuman-in-the-loop verification and outcome monitoringReward function auditingA3: Scheduling agent

CriticalGradient anomaly detectionByzantine-robust aggregationB1: Federated learning

HighSource diversity verificationTemporal pattern analysisB2: Sybil attack

CriticalOutcome monitoringHistorical data provenanceC1: Transplant

CriticalPostcrisis audit protocolsHuman-in-the-loop overrideC2: Crisis triage

CriticalAdversarial testing at deploymentModel provenance trackingD1: Supply chain

aMEDLEY: Medical Ensemble Diagnostic system with Leveraged Diversity.

Constraint-Driven Architecture in Practice
The Dynasmile video-based smile analysis system in
orthodontics exemplifies how constraint-driven architectures
can provide inherent resilience to data poisoning [48]. Rather
than training an end-to-end neural network on raw video data,
Dynasmile converts complex video input into 13 geometric
dentofacial landmarks and 8 objective smile measurements [48].
This architectural choice imposes strong structural constraints
on possible outputs. Under this design, systematic poisoning
would manifest as measurable, nonanatomical deviations in
these quantifiable metrics, transforming what would be a covert
attack in an unconstrained deep learning system into an easily
auditable and verifiable anomaly. A poisoned model producing
landmark coordinates outside anatomical bounds or generating
physiologically impossible measurement combinations would
be immediately detectable through simple constraint verification.

Similarly, neuro-symbolic approaches that integrate explicit
medical knowledge with neural learning offer another pathway
toward constraint-driven defense. Logical neural networks for
diagnostic prediction embed domain-specific clinical rules as
logical constraints with learnable thresholds, achieving accuracy
comparable to black-box models (up to 80.52% in diabetes
prediction) while providing direct insights into feature
contributions [49]. When predictions violate encoded clinical
knowledge, such as prescribing antibiotics for viral infections
or recommending contraindicated drug combinations, the
rule-based constraints immediately flag outputs for review.
Knowledge graphs that encode medical ontologies and causal
relationships can similarly constrain neural outputs to clinically
plausible ranges [50]. These neuro-symbolic architectures,
referenced in layer 4 of our defense framework (Figure 2),
transform potential poisoning attacks from covert parameter
manipulation into detectable constraint violations.

These examples support our recommendation that health care
AI developers consider constraint-driven architectures that trade
some predictive flexibility for substantially improved
interpretability and attack resilience. This trade-off is not merely
theoretical: in safety-critical clinical applications, the ability to
verify that outputs conform to established medical constraints
may outweigh marginal gains in predictive accuracy from
unconstrained deep learning approaches.

Regulatory Aspects
Current FDA guidance on AI-enabled Software as a Medical
Device emphasizes the total product life cycle approach, which
requires predetermined change control plans and continuous
performance monitoring [30]. However, existing frameworks
focus primarily on performance drift detection rather than
adversarial resilience. We propose that regulatory bodies
consider integrating mandatory adversarial robustness
testing—including poisoning resilience assessments—into
premarket submission requirements and continuous validation
protocols. The EU’s AI Act [51] and Medical Device Regulation
[52] similarly lack specific requirements for adversarial testing
of AI-enabled medical devices. Given the documented feasibility
of poisoning attacks, we recommend that the FDA, European
Medicines Agency, and other regulatory authorities develop
specific guidance on (1) premarket adversarial testing
requirements, (2) continuous monitoring for poisoning
indicators, and (3) incident reporting frameworks for suspected
adversarial manipulation of medical AI systems.

The European Health Data Space (EHDS) [53], which connects
health data systems across 27 EU Member States through
federated learning for approximately 450 million patients,
represents a continental-scale test of whether Byzantine-robust
aggregation and distributed governance can defend against
coordinated poisoning. However, the EHDS architecture also
amplifies vulnerabilities. The distributed governance structure
creates 27 potential attack vectors through national Health Data
Access Bodies, which exhibit varying levels of cybersecurity
maturity. Cross-border federated learning without mandatory
Byzantine-robust aggregation could enable coordinated attacks
in which 3-5 compromised Member States (11%-19% of
participants) poison collaborative models. Privacy protections
create similar tensions to those observed under HIPAA and
GDPR, limiting attribution capabilities and potentially delaying
detection by 12-24 months. Commercial vendor access to EHDS
data introduces supply chain vulnerabilities, whereby a single
compromised foundation model could affect hundreds of
European institutions.

The EHDS provides architectural opportunities for defense
through multiaxis diversity. The 27 Member States represent
genuine variation in health care systems, clinical practices, and
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patient demographics, enabling detection through cross-national
disagreement patterns. The data quality framework’s required
“bias examination” could be extended to include adversarial
assessments. Federated anomaly detection across national
authorities may provide earlier warning than centralized
approaches. Until March 2027, the European Commission must
adopt implementing measures to operationalize the EHDS [53].
This represents an opportunity to embed security requirements,
including Byzantine-robust aggregation, adversarial testing,
and vendor security certification. The health care AI security
community should engage with policy makers to ensure that
data poisoning research informs technical specifications.

User Education and Proactive Security Awareness
Defense effectiveness depends on health care personnel
understanding the threats posed by data poisoning. User
education represents a critical component of security.
Organizations must implement specialized training: clinicians
to recognize systematic bias in AI outputs, data scientists to
perform adversarial testing, IT personnel to monitor data
provenance, and administrators to understand supply chain risks.
Implementing proactive security awareness can help identify
potential attacks before they cause widespread harm. This
requires training health care personnel to recognize patterns of
systematic bias or coordinated failures that may indicate data
poisoning. Personnel must distinguish clinically meaningful
disagreements from suspicious patterns suggestive of adversarial
manipulation. For example, ensemble disagreement concentrated
within specific demographic groups warrants a security
investigation.

Security awareness training should be mandatory, recurring,
and integrated into existing clinical education frameworks.
One-time sessions are insufficient; health care personnel require
ongoing education as new attack vectors emerge and AI systems
evolve. Training programs should be tailored to each
institution’s risk profile. Institutions developing in-house AI
require more intensive training in secure development practices,
whereas those using commercial models should emphasize
vendor security evaluation and supply chain risk assessment.
Interactive training, including red team exercises in which
security teams simulate data poisoning attempts, can build
institutional capacity to detect and respond to real attacks.

Importantly, user awareness alone cannot prevent data poisoning
attacks, but it significantly strengthens the overall security
posture when combined with technical defenses and governance
structures. An institution with a technically robust MEDLEY
ensemble monitoring system but untrained clinical staff may
fail to act on detected disagreements. Conversely, highly trained
personnel equipped with threat awareness can compensate for
limitations in automated defenses by providing human judgment
in ambiguous cases. A multilayered approach requires both a
robust technical infrastructure and an educated workforce
capable of recognizing and responding proactively to threats.

In-House AI Development and Security Misconceptions
A common misconception is that in-house AI development
provides inherent protection against data poisoning. However,
the attack vector operates through access to training data,

regardless of model provenance. Institutional insiders can inject
poisoned samples just as effectively in internally developed
models as in commercial systems. Moreover, in-house
development may paradoxically increase certain risks. Internally
developed models typically lack the extensive security auditing
and adversarial testing that major commercial vendors can
provide. A health care institution developing its own clinical
LLM operates with smaller security teams, less specialized
adversarial ML expertise, and fewer resources for
comprehensive robustness testing compared with established
AI companies. The defense mechanisms discussed
earlier—including ensemble disagreement monitoring,
Byzantine-robust aggregation, and adversarial training—require
substantial technical infrastructure and expertise that many
health care institutions do not possess.

In-house development does not eliminate supply chain risks.
Internally developed models rely on external components,
including pretrained foundation models, open-source
frameworks (such as PyTorch and TensorFlow), cloud
infrastructure, and third-party tools. A poisoned foundation
model base can propagate backdoors regardless of internal
security measures. Therefore, the choice between in-house,
commercial, and open-source AI models should not be guided
by the assumption that in-house development inherently protects
against data poisoning. Instead, health care organizations must
implement the multilayered defense framework described earlier,
regardless of model provenance. Security depends on robust
data governance, provenance tracking, ensemble disagreement
monitoring, adversarial testing, and institutional security
expertise—not on whether the model was developed in-house.
While in-house development may offer advantages in
customization and regulatory compliance, it cannot guarantee
protection against the data poisoning threats analyzed in this
study.

Limitations
This analysis has several limitations. First, although we
synthesized empirical attack success rates from peer-reviewed
studies (Table 2), we did not perform original attacks on
production health care AI systems. The analytical scenarios
(A1-D1) apply published research findings to health care
contexts rather than representing documented incidents. Actual
feasibility may vary depending on local security infrastructure
and deployment configurations.

Second, our analysis focused on data poisoning during training
and fine-tuning, with limited coverage of inference-time attacks,
adversarial examples, model extraction, or privacy attacks. This
scope was deliberately constrained to training-time
vulnerabilities. Third, the generalizability of our findings across
different model scales is uncertain. Published research has
examined models with up to 13 billion parameters [1,2,20],
whereas health care increasingly employs models with 100
billion to 340 billion+ parameters. Although recent studies
suggest that attacks require near-constant sample counts
regardless of model scale [5], extrapolating these findings to
models with more than 100 billion parameters warrants further
empirical validation.
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Fourth, defense mechanisms, including MEDLEY, have not
been validated in prospective clinical trials. Their real-world
effectiveness depends on implementation, integration into
clinical workflows, and human factors, all of which require
empirical deployment studies. Fifth, our impact projections
relied on conservative assumptions, which may underestimate
potential harm. We assumed limited attacker capabilities, partial
compromise, and detection within 12-24 months. More
sophisticated adversaries could cause substantially greater harm,
whereas highly resilient organizations may mitigate some risks.
Sixth, our regulatory analysis reflects policies as of late 2025;
ongoing or future governance changes may mitigate some of
the vulnerabilities identified. Finally, our literature synthesis
was limited to English-language studies, which may introduce
publication bias.

Despite these limitations, our analysis highlights critical security
gaps that demand urgent attention from the health care AI
community, regulators, and policy makers.

Conclusions
Data poisoning constitutes a significant security challenge that
existing regulatory frameworks and testing methodologies
inadequately address. Our analysis shows that even small
numbers of poisoned samples can compromise health care AI
systems, with detection delays ranging from months to years—or
potentially indefinite—without appropriate monitoring. Privacy
regulations, while essential for patient protection, simultaneously

create practical operational challenges for cross-institutional
security monitoring. Conventional cybersecurity defenses are
insufficient to prevent adversarial data manipulation.

Health care organizations should adopt multilayered defense
frameworks, incorporating strategies such as ensemble
disagreement monitoring (eg, the proposed MEDLEY
framework), active defenses, governance structures, and
architectural safeguards. Although MEDLEY requires empirical
validation before clinical deployment, the underlying principle
of ensemble disagreement monitoring offers a promising
approach for detecting data poisoning. International coordination
on security standards is essential. Most critically, the health
care community must evaluate whether black-box AI
architectures are appropriate for life-or-death decisions, or
whether patient safety requires interpretable systems that
prioritize verifiable safety over marginal performance gains.
The asymmetry between the ease of attack—requiring only
hundreds of poisoned samples—and the difficulty of
detection—often 12-24+ months—demands urgent action.
Without proactive implementation of ensemble monitoring,
Byzantine-robust architectures, and mandatory adversarial
testing, health care organizations risk systematic, undetected
compromise affecting thousands of patients over time. The
question is not if data poisoning will occur in clinical AI, but
when—and whether we will act before theoretical vulnerabilities
translate into documented clinical disasters.
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