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Abstract

Background: Cystoscopy remainsthe gold standard for diagnosing bladder lesions; however, its diagnostic accuracy is operator
dependent and prone to missing subtle abnormalities such as carcinoma in situ or misinterpreting mimic lesions (tumor,
inflammation, or normal variants). Artificial intelligence—based image-analysis systems are emerging, yet conventional models
remain limited to single tasks and cannot produce explanatory reports or articul ate diagnostic reasoning. Multimodal large language
models (MM-LLMs) integrate visual recognition, contextual reasoning, and language generation, offering interpretive capabilities
beyond conventional artificial intelligence.

Objective: This study aims to rigorously evaluate state-of-the-art MM-LLMs for cystoscopic image interpretation and lesion
classification using clinician-defined stress-test datasets enriched with rare, diverse, and challenging lesions, focusing on diagnostic
accuracy, reasoning quality, and clinical relevance.

Methods: Four MM-LLMs (OpenAl-03 and ChatGPT-40 [OpenAl]; Gemini 2.5 Pro and MedGemma-27B [Googl€e]) were
evaluated under blinded, randomized procedures across two tasks: (1) free-text image interpretation for anatomic site, findings,
lesion reasoning, and final diagnosis (n=401) and (2) seven-class tumor-likelesion classification (n=113) within amultiple-choice
framework (cystitis, polyps, papilloma, papillary urothelial carcinoma, carcinomain situ, non-urothelial carcinoma, and none of
the above). Threeratersindependently scored outputs using a5-point Likert scale, and classification metrics (accuracy, sensitivity,
specificity, Youden Jindex (Youden J), and Matthews correl ation coefficient [MCC]) were calculated for lesion detection, biopsy
indication, and malignancy endpoints. For optimization, model performance was compared between zero-shot and text-based
in-context learning prompts that were prefixed with brief descriptions of tumor features.

Results:. The 401-image test set spanned 40 subcategories, with 322 (80.3%) containing abnormal findings in the image
interpretation task. OpenAl-03 demonstrated strong reasoning, with high satisfaction for anatomy (339/401, 84.5%) and findings
(305/401, 76%), but lower satisfaction for lesion reasoning (211/401, 52.5%) and final diagnosis (193/401, 48.2%), indicating
increasing difficulty with higher-order synthesis. Mean Likert score differences (OpenAl-03 minus Gemini 2.5 Pro) were +0.27
for findings (adjusted P value: g=0.002), +0.24 for lesion reasoning (g=0.047), and +0.19 for final diagnosis. For clinically
relevant endpoints in the full set, OpenAl-03 achieved the most balanced performance, with lesion detection accuracy of 88.3%,
sensitivity of 92%, specificity of 73.1%, Youden J of 0.650, and MCC of 0.635. In 7-class tumor-like lesion classification,
OpenAl-03 achieved accuracies of 73.5% for biopsy indication and 62.8% for malignancy, with a balanced sensitivity-specificity
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trade-off, outperforming other models. Notably, OpenAl-03 performed best on prevalent malignant lesions. ChatGPT-40 and
Gemini 2.5 Pro showed high sensitivity but low specificity, whereas MedGemma:-27B underperformed. In-context learning
improved OpenAl-03 microaverage accuracy (40.7% - 46.0%; MCC 0.311 - 0.370) but yielded only slight specificity gains and
minimal accuracy change in other models, likely constrained by the absence of paired image-text context.

Conclusions: MM-LLMs demonstrate meaningful assistive potential in generating interpretable cystoscopy free-text rationales
and supporting biopsy triage and training. However, performance in difficult differential diagnoses remains modest and requires

further optimization before safe clinical integration.

(J Med Internet Res 2026;28:€87193) doi: 10.2196/87193
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Introduction

Cystoscopy isone of the most frequently performed procedures
in urology [1]. Its effectiveness heavily depends on the
urologist’s experience, attention to detail, and interpretive skill,
making it both technically and diagnostically challenging [2].
Interobserver variability iscommon, and lesion characterization
(tumor vs inflammation vs normal variant) is not aways
straightforward, often requiring clinical correlation. Bladder
cancer, the ninth most common cancer globaly [3], relies
heavily on cystoscopy as the cornerstone for diagnosis,
treatment, and surveillance. However, studies report
false-negative rates ranging from 10%-40%, with white-light
cystoscopy missing up to one-third of carcinomain situ (CIS)
cases and frequently overlooking small tumors[4]. Accordingly,
cystoscopic interpretation is a nuanced clinical process.

Artificial intelligence (Al)-assisted cystoscopic diagnosis and
decision-making can be decomposed into distinct tasks: lesion
detection (present vs absent), lesion classification, margin
segmentation, descriptive reporting, biopsy triage, fina
diagnosis, and ultimately full report generation. Each task places
different demands on agorithms, ranging from visual
localization to semantic reasoning and clinical judgment.
Previous work in cystoscopy has predominantly framed the
problem as image classification or segmentation [5-9], often
using speciaized vision pipelinesthat localize or outline lesions
but provide limited clinica context and have uncertain
generalizability across morphol ogy-diverse appearances.

Evidence from other endoscopic domains provides a useful
benchmark. Task-tuned computer-aided detection systems in
colonoscopy, for example, improve clinically meaningful
endpoints such as polyp or adenoma detection in randomized
and real-world settings; however, these gains are achieved by
narrowly optimized, single-purpose models rather than by
systems capable of broader interpretive reasoning [10-14].

https://www.jmir.org/2026/1/e87193

Against this background, multimodal large language models
(MM-LLMs) hold substantial potential [15]. By jointly
processing images and text, MM-LLMs can, in principle, “see
and say”: integrate visual features with medical knowledge,
generate free-text rational es, and condition decisionson clinical
context [16]. Early reports suggest encouraging aggregate
performance, but also reveal marked variability across lesions
and tasks, indicating arole as assistive rather than autonomous
readers at present [17].

Key gapsremain. First, itisunclear how state-of-the-art (SOTA)
MM-LLMs perform on morphology-diverse, clinically difficult
cystoscopic images curated as a stress test by domain experts.
Second, the alignment between their free-text reasoning and
expert judgment has not been systematically examined. Third,
the practical utility of in-context learning (ICL) in
cystoscopy—without  task-specific ~ fine-tuning—remains
uncertain [18].

To address these gaps, our goal was to characterize the current
capabilities and limitations of MM-LLMs in cystoscopic
interpretation and to outline directions for model strengthening
and additional adaptations required for safe clinical adoption.

Methods

Overview

Building on this objective, we (1) constructed aclinician-defined
stress test that reflects real-world interpretive difficulty and
spans benign and malignant lesions;, (2) implemented a
rater-blinded, model-anonymized evaluation across 2
complementary tasks—free-text image interpretation (4
open-ended questions plus abinary lesion detection query) and
structured 7-class lesion classification; (3) mapped model
outputs to clinically actionable binary endpoints (biopsy
indication and malignancy); and (4) quantified the incremental
benefit of ICL over zero-shot prompting. The overall study
workflow is provided in Figure 1.
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Figure 1. Study flow diagram. Evaluation pipeline for cystoscopic image interpretation and tumor-like lesion classification using 4 multimodal large
language models (MM-LLMs). ICL: in-context learning; MCC: Matthews correlation coefficient; NPV: negative predictive value; PPV: positive
predictive value.
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practice, including endometriosis, miscellaneous deposits,
fistulas, and erosion-related changes. This approach yielded a
corpus with broad lesion coverage suitable for rigorous
stress-testing cystoscopic interpretation.

Sources and | mage Preprocessing

Images were curated between April and June 2025 from five
sources. (1) an industry archive of intra-operative images
captured on Karl-Storz endoscopes, (2) reference atlases (eg,
Springer’'s Diagnostic Cystoscopy [19] and other urologic
textbooks), (3) deidentified cystoscopy images obtained from
websites, (4) open-access repositories accompanying
PubM ed-indexed papers and public datasets, and (5) Creative
Commons-licensed surgical or teaching videos hosted on
YouTube (Google). A total of 500 images were curated, and 99
were excluded dueto poor image quality or anill-defined lesion.
The distribution of image sources and the memorization-test
results, which were used to evaluate potential data-leakage risk
from overlap with the 4 models pretraining corpora, are
summarized in Table S1in MultimediaAppendix 1. Raw images
were center-cropped to asquare aspect ratio, resized to 800x800
pixels, and saved as JPEG files. This standardized pipeline
harmonized the field of view and resolution across
heterogeneous sources and ensured uniform inputs for all
downstream model evauations.

Multimodal LLMs

Theevaluated MM-LLMs comprised 3 general -purpose models
and 1 open-weight, medical-specific baseline. Two
reasoning-optimized models—OpenAl-03 [20] and Google
Gemini 2.5 Pro [21]—were selected for their native image
processing capabilities and emphasis on multistep reasoning.
These represent the SOTA reasoning MM-LLMs available
before July 2025. ChatGPT-40 (OpenAl) was included as a
general-purpose, nonreasoning MM-LLM optimized for
everyday assistance and among the earliest widely deployed
models capable of accepting image input. MedGemma-27B
(Google) [22] was intentionally included as a local and
open-weight baseline—an open-source medical model (~27B
parameters) suited for on-premises deployment and potential
clinical fine-tuning. Because its parameter count and training
budget are substantially smaller than the proprietary models
(undisclosed), MedGemma-27B servesas abaselinerather than
a capacity-matched comparator. Collectively, these systems
span closed-source production platforms and an open-weight
medical baseline, enabling abalanced, transparent comparison.

Study Design

Establishment of the Gold Standard

The reference standard diagnoses were determined through a
multiphase, consensus-based process. Two urological experts,
each with more than 25 years of clinical experience,
independently reviewed all cystoscopicimages, blinded to each
other's assessments. The initial interexpert agreement was
satisfactory (Cohen k=0.81). In cases of disagreement, a
consensus meeting was convened to establish a single unified
diagnosis, integrating both normal anatomical features and
pathological findings.

https://www.jmir.org/2026/1/e87193
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Image I nterpretation and Lesion Classification Tasks

For acomprehensive eval uation, we designed 2 complementary
tasks that reflect distinct components of diagnostic reasoning.
Thefirst, the image interpretation task, evaluated each model’s
capacity for domain-specific interpretation, logical reasoning,
descriptive accuracy, and clinical judgment. The second, the
lesion classification task, assessed the model’s discriminative
performance in differential diagnosis. Together, these 2 tasks
provided a systematic assessment of MM-LLMs in both
free-form interpretation and constrained classification settings,
thereby capturing complementary dimensions of clinical
decision-making.

Image I nterpretation Task

The task used a structured, stepwise, open-ended question
format. Each model was primed with a role-based instruction
(“Supposeyou areaurologist”) and prompted with 4 sequential
open-ended questions addressing anatomical site (Q1), findings
(Q2), lesion reasoning (Q4), and final diagnosis (Q5). Q3 was
not an open-ended interpretation item; it was a binary
lesion-detection query (present or absent) embedded in the
Q1- Q5 chain-of-thought to assess abnormal-versus-normal
detection and was automatically graded against the gold
standard. Free-text outputs for Q1, Q2, Q4, and Q5 were
independently assessed by 3 raters (urology residents with 2-5
years of cystoscopy experience) using a 5-point Likert scale
(1=disagree, 2=somewhat disagree, 3=neutral, 4=somewhat
agree, and 5=agree).

Blinded and Randomized Evaluation Procedures

A dedicated evaluation software was developed to ensure
complete rater blinding and randomization of both image
presentation and model output order (Figure S1in Multimedia
Appendix 1).

« Image-level randomization: the display order of images
was randomized once and shared across al raters. Each
evaluation screen presented only 1 cystoscopic image at a
time.

«  Structured display: the upper panel displayed the image
and its gold-standard answers to 5 reference questions (4
open-ended and 1 binary detection). The lower panel
simultaneously presented anonymized text responses from
the 4 MM-LLMs.

+ Model-level randomization and anonymization: for each
image, the order of mode outputs was independently
shuffled to minimize position bias. Model identities were
fully anonymized to raters.

«  Scoring process: raters independently scored the free-text
responses using the 5-point Likert scale. The binary
lesion-detection item (Q3) was automatically graded against
the reference standard and was not rated by humans.

Lesion Classification Task

The lesion classification task was conducted to evaluate the
models’ discriminative capacity. It simulatesaclinical scenario
in which a urologist has already identified a tumor-like lesion
and requires a differential diagnosis. A subset of tumor-like
lesion images was used for this analysis. The task involved a
7-class multiple-choice framework comprising cystitis, polyps,
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papilloma, pUC, CIS, nonurothelial carcinoma (non-U Ca), and
none of the above (NOTA). Models were tested under 2
prompting strategies: zero-shot prompting and ICL. Inthe ICL
condition, a text-based description of tumor-related features
was incorporated into the prompt. This task aimed to assess
each model’s discriminative performance, adaptability to
structured clinical classification, and robustness across
prompting paradigms.

A subset of tumor-likelesionimageswasused for thistask. The
7-class classification included cystitis, polyps, papilloma, pUC,
CIS, non-U Ca, and NOTA. Models were tested under 2
settings—zero-shot  prompting and ICL with added
tumor-feature  descriptions—to  assess  discriminative
performance.

Clinically Relevant Binary Endpoint Conversion

To mirror real-world cystoscopic decision-making when
tumor-like lesions are encountered, the 7-class classification
task was collapsed into 2 clinically oriented binary endpoints.
Thefirst, the biopsy-indi cation endpoint, represented immediate
clinical decision-making: pUC, CIS, non-U Ca, papilloma, and
polypswerelabeled as*biopsy indicated,” whereas cystitisand
NOTA were labeled as “biopsy not indicated.” The second, the
malignancy endpoint, classifies pUC, CIS, and non-U Ca as
malignant, and cystitis, polyps, papilloma, and NOTA as
nonmalignant. This mapping preserved the full 7-class
framework for granular analysis while providing pragmatic
outcomes aigned with bedside triage. Notably,
papilloma—though histologically benign—was categorized as
“biopsy indicated” to reflect the routine need for histologic
confirmation.

Prompt Design

The complete and exact prompt designs are detailed in the
Multimedia Appendix 1.

Prompt Design With Open-Ended Questions for I mage
I nterpretation

We used arole-based, zero-shot prompt tailored to cystoscopy.
The prompt primed domain reasoning (“Suppose you are a
urologist”) and briefly contextualized the procedure, followed
by stepwise instructions to encourage explicit intermediate
reasoning. The query comprised five domains: (1) anatomic site
(free text), (2) endoscopic findings (free text), (3) presence or
absence of a pathological lesion (binary), (4) lesion diagnostic
reasoning and justification if present (free text), and (5) final
diagnosis (free text).

Prompt Design for Tumor-Like Lesion Classification
Task With Multiple-Choice Diagnostic Framework

We compared 2 prompting strategies for cystoscopic diagnosis
of tumor-like lesions: zero-shot and ICL. Both adopted a
role-based instruction (“Suppose you are a urologist”). The
zero-shot prompt presented asingle forced-choice 7-classlabel
set. In contrast, the ICL prompt prefixed brief text-based
descriptions of the 7 lesion classes before the same
multiple-choice query. Models were instructed to provide the
best diagnosis from the given options and include a concise
rational e grounded in endoscopic morphol ogy.

https://www.jmir.org/2026/1/e87193
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Outcome Measures and Statistical Analysis

For each image-question-answer instance, the 3 raters
Likert-scale ratings were averaged to obtain a single consensus
score. The distribution of these scores across the test set was
summarized using the mean and SD to describe the central
tendency and variability of model performance. To compare
performance among models, pairwise differencesin scoreswere
analyzed using paired t tests. Results were reported as mean
differences with 95% Cls. Given the ordina nature of
Likert-scale data, Wilcoxon signed-rank tests were conducted
as a sensitivity analysis. To account for the multiplicity of
pairwise comparisons across the top 3 performing models, the
Benjamini-Hochberg procedure was applied to control thefalse
discovery rate and mitigate type| error. Consequently, statistical
significance for all intermodel comparisons was defined as a
false discovery rate-adjusted P value (q value)<.05. Subgroup
analyses of final diagnosis were conducted according to
cystoscopic finding categories and anatomic sites, following
the same statistical procedures.

For interpretability, the mean Likert-scale score for each item
was further converted into a binary satisfaction outcome:
satisfactory if the mean score was >3 and unsatisfactory if <3.
The satisfaction rate (percentage of satisfactory responses) was
reported and used as a binary outcome in subsequent analyses.

The performance metricsfor the classification tasks—including
binary domains (lesion detection: present vs absent, biopsy
indication: yesor no, and malignancy: yes or no) and the 7-class
lesion classification—were derived from confusion matrices.
Reported metrics included accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, Youden J,
and the Matthews correlation coefficient (MCC) [23]. Youden
Jrepresentsthe overall diagnostic effectiveness of atest, defined
as (sensitivity + specificity — 1), and reflectsthe bal ance between
true-positive and true-negative rates. The MCC quantifies the
overall agreement between predicted and actual classifications
by incorporating all 4 components of the confusion matrix (true
or false positives and negatives). Metric comparisons were
conducted using the chi-square test.

For the 7-class task (n=113), models were instructed to select
exactly 1 forced-choice label from the prespecified options.
Outputs failing to provide a single permissible choice (eg,
refusalssuch as“| could not answer this question”) were coded
asinvalid. To ensure a consistent head-to-head comparison and
minimize selection bias, the primary (strict) analysis used an
intent-to-treat approach: invalid outputs were retained in the
denominator and treated as incorrect predictions. However,
because an invalid output does not necessarily reflect an

incorrect  diagnosis and may instead represent
abstention—potentially safer than guessing in a

human-in-the-loop workflon—we conducted a secondary
sensitivity analysis, recalculating performance metrics
conditional onvalid responsesonly. All statistical analyseswere
conducted using SAS software (version 9.4; SASInstitute Inc).

Ethical Considerations

The Research Ethics Committee A of National Taiwan
University Hospital determined that this study was exempt from
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human participant research (NTUH-REC 202507210W).
Informed consent was waived because this study involved a
secondary analysis of deidentified cystoscopic images with no
patient contact or intervention; for publicly available or
published images, consent for the original collection followed
the source publication, and the exemption permitted secondary
analysis without additional consent. All images were
deidentified, stored on access-controlled ingtitutional systems,
and reported only in aggregate. No participants were recruited,
and no compensation was provided; all figures were reviewed
to ensure no individual isidentifiable.
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Results

Distribution of the Whole Test Set and the Tumor-like
L esion Subset

Among 401 cystoscopic images, most originated from the
bladder (n=329), followed by the prostate (n=41) and urethra
(n=31). Abnormal findingswere present in 322 (80.3%) images.
The most common categoriesweretumor or neoplasm (n=126),
structural or outlet abnormalities (n=76), inflammatory or
reactive changes (n=69), deposits or foreign bodies (n=43), and
vascular lesions (n=8); 79 (19.7%) images showed normal
anatomy (Table 1). Table 1 provides the detailed distribution
of finding subcategories, reflecting diagnostic diversity and
difficulty.

JMed Internet Res 2026 | vol. 28 | e87193 | p. 6
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Shihet d

Table 1. Detailed distribution of cystoscopic finding subcategories in the whole test dataset (N=401). This table provides a comprehensive breakdown
of all observed cystoscopic findings across 3 hierarchical levels (normality, categories, and subcategories) and anatomic sites (bladder, prostate, and
urethra). Values are presented as n (intracategory %); percentages represent the proportion of each subcategory within its respective parent category.
Theinclusion of both benign and malignant findingsillustrates the heterogeneity of endoscopic presentations and underscores the diagnostic complexity
represented in the dataset.

Anatomic site Bladder Prostate Urethra Total

Finding normality, categories, and subcategories, n (intracategory %)

Abnormal 263 35 24 322
Tumor or neoplasm 114 (100) — 12 (100) 126
Bladder polyp 7(6.1) — — 7
Suspected bladder CIS? 17(14.9) — — 17
Suspected nephrogenic adenoma 2(1.8) — — 2
Papilloma 12 (10.5) — — 12
Papillary urothelial carcinoma 52 (45.6) — — 52
Nonurothelial carcinoma 18 (15.8) — — 18
Endometriosis 5(4.4) — — 5
Teratoma 1(0.9) — — 1
Urethral polyp — — 4(33.3) 4
Urethral tumor — — 8 (66.7) 8
Inflammation or reaction 67 (100) 1(100) 1(100) 69
Bladder amyloidosis 4(6.0) — — 4
Bladder keratinizing 6(9.0) — — 6
Bladder malakoplakia squamous metaplasia 5 (7.5) — — 5
Bladder mucosal break 1(1.5) — — 1
Cystitis 26 (38.8) — — 26
Hemorrhagic cystitis 5(7.5) — — 5
Suspected 1CP 10 (14.9) — — 10
Suspected radiation cystitis 7 (10.49) — — 7
Suspected Schistosomiasis 3(4.5) — — 3
Urethritis — 1 (100) 1(100) 2
Deposits or foreign bodies 39 (100) 2 (100) 2 (100) 43
Bladder encrustation 5(12.8) — — 5
Blood clot 12 (30.8) 1(50) 1(50) 14
Foreign body 7(17.9) — 1(50) 8
Stone 15(38.5) 1(50) — 16
Structure or outlet 35 (100) 32 (100) 9 (100) 76
Bladder diverticulum 4(11.4) — — 4
Bladder neck contracture 4(11.4) — — 4
Bladder scar 12 (34.3) — — 12
Bladder trabeculation 2(.7) — — 2
Vesicoureteral reflux 4(11.4) — — 4
Ureterocele 6(17.2) — — 6
Suspected fistula 3(8.6) — 2(22.2) 5
Prostate enlargement — 31(96.9) — 31
Prostatic cyst — 131 — 1
https://www.jmir.org/2026/1/87193 JMed Internet Res 2026 | vol. 28 | e87193 | p. 7
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Anatomic site Bladder Prostate Urethra Total
Urethra stricture — — 4 (44.4) 4
Urethral cyst — — 1(111) 1
Urethral trauma — — 2(22.2) 2
Vascularity 8 (100) — — 8
Bladder hemangioma 1(12.5) — — 1
Bladder telangiectasia 4 (50.0) — — 4
Bladder varices 3(37.5) — — 3
Normal 66 6 7 79

&CIS: carcinomain situ.
B1C: interstitial cystitis.
The tumor-like lesion subset included 113 visualy and
pathologically similar images spanning both benign and
malignant lesions: cystitis (n=18), polyps (n=7), papilloma

(n=12), pUC (n=20), CIS (n=17), non-U Ca(n=17), and NOTA
(n=22) (Table 2).

Table 2. Distribution of the tumor-like lesion subset (n=113) used for the 7-class lesion classification task, representing a focused subset of the whole
test dataset. The tumor-like lesion subset comprised 18 cystitis (15.9%), 7 polyps (6.2%), 12 papilloma (10.6%), 20 papillary urothelia carcinoma
(PUC; 17.7%), 17 carcinomain situ (CIS; 15%), 17 non-urothelia carcinoma (non-U Ca; 15%), and 22 none of the above (NOTA; 19.5%).

Lesion type Value, n (%)
Cydtitis 18 (15.9)
Polyps 7(6.2)
Papilloma 12 (10.6)
puc? 20 (17.7)
cs? 17 (15)
Non-U Ca° 17 (15)
NOTAY 22(19.5)
Total 113 (100)

8UC: papillary urothelial carcinoma.
BCIS: carcinomain situ.

®Non-U Ca: non-urothelial carcinoma.
dNOTA: none of the above.

Comparative Mean Scoresof LLMsin Image
Interpretation

Among the whole test set (n=401), MM-LLMs demonstrated
progressively lower performance as task complexity increased
(Table 3 and Figure 2). Mean Likert-scale scores declined from
anatomic site recognition (= 4.1) to findings (= 3.4-3.7), lesion
reasoning (= 2.7-2.9), and fina diagnosis (= 2.6-2.8).
OpenAl-03, ChatGPT-40, and Gemini 2.5 Pro achieved
comparable accuracy in anatomical localization, while
OpenAl-03 showed the highest overall consistency and clarity

https://www.jmir.org/2026/1/e87193

in lesion description. Statistically significant differences
emerged in the findings, lesion reasoning, and final diagnosis
domains, in which OpenAl-03 outperformed Gemini 2.5 Pro
and the medical-specific MedGemma27B. Notably,
MedGemma-27B  lagged substantially  behind  the
general-purpose MM-LLMs across dl categories, suggesting
that its limited training scope constrained both descriptive
precision and diagnostic reasoning. These results indicate that
reasoning-optimized general-purpose MM-LLMs currently
outperform open-source, domain-specific models in free-text
cystoscopic interpretation tasks.

JMed Internet Res 2026 | vol. 28 | e87193 | p. 8
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

Shihet a

Table 3. Performance of 4 multimodal large language models (MM-LLMs) in cystoscopic image interpretation, presented as mean Likert scores and
SDs across open-ended questions and final-diagnosis subgroups.

Question and subgroup Value OpenAl-03, ChatGPT-40, Gemini 25Pro, MedGemma-27B,
mean (SD) mean (SD) mean (SD) mean (SD)
Wholetest set (n=401)
Questions
Q1: anatomic site 401 4.13 (1.24) 4.06 (1.20) 4.10 (1.21) 2.45(1.37)
Q2: findings 401 3.69 (1.23) 3.54 (1.25) 3.42 (1.30) 1.80 (1.03)
Q4: lesion reasoning 401 2.94 (157) 2.89 (1.49) 2.70 (1.48) 1.62 (1.11)
Q5: final diagnosis 401 2.79 (1.59) 2.75 (1.51) 2.61 (1.51) 1.48 (0.93)
Q5. final diagnosis
Subgrouping by findings
Tumor or neoplasm 126 3.12 (1.44) 3.32(1.36) 3.07 (1.51) 2.06 (1.18)
Inflammation or reaction 69 2.34(1.21) 2.82(1.30) 2.87 (1.29) 1.19 (0.45)
Deposits or foreign bodies 43 2.77 (1.59) 2.97 (1.52) 2.64 (1.64) 1.07 (0.26)
Structure or outlet 76 1.71(1.13) 1.45 (0.69) 2.45 (1.67) 1.03 (0.10)
Vascularity 8 2.42 (1.05) 2.75(0.71) 2.75(0.87) 1.29 (0.70)
Normal 79 3.79 (1.76) 2.92 (1.81) 1.76 (1.13) 1.49 (1.04)
Subgrouping by anatomic site
Bladder 329 3.04 (1.56) 3.06 (1.46) 2.64 (1.47) 1.56 (1.00)
Prostate 41 1.45 (1.02) 1.24(0.62) 2.95 (1.79) 1.09 (0.31)
Urethra 31 2(1.34) 1.48 (0.91) 1.80 (1.27) 1.12 (0.38)

Figure 2. Comparative mean scores of multimodal large language models (MM-LLMs) for cystoscopic image interpretation across 4 question domains
in the whole test set. Asterisks denote statistically significant pairwise differences among the top 3 models. *q<0.05, where q is the fal se discovery rate
(FDR)-adjusted P value.

Mean score of Likert scale

M ean-score pai rwise comparisons among models (mean-score
deltas) are provided in Table S2 in Multimedia Appendix 1. A
0.2-point difference on the 5-point Likert score corresponds
approximately to a5-point difference on a 100-point scale. The
matrix of column-row differences confirmed OpenAl-03'sedge

Whole set (n=401)

5- *
* *
.4‘1. 4.1 4.1 j
4- 37
3.5 34
3 29 g ” 28 27 OpenAl-03
i ChatGPT-40
2- B Gemini-2.5-Pro
“ 15 MedGemma-27B
1 T T T T

Anatomic site

https://www.jmir.org/2026/1/e87193

Findings

Questions

Lesion reasoning

Final diagnosis

across open-question domains. Versus Gemini 2.5 Pro,
OpenAl-03 scored higher by +0.27 on findings (g=0.002), +0.24
on lesion reasoning (g=0.047), +0.03 on anatomic site, and
+0.19 onfinal diagnosis (not significant). Against ChatGPT-40,
OpenAl-03 held a small but consistent advantage on findings
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(+0.15, g=0.004) with near-parity on anatomic site, lesion
reasoning, and fina diagnosis (+0.07, +0.06, +0.04; not
significant). All general-purpose models substantially
outperformed the medical-specific MedGemma-27B;
OpenAl-03's margins were +1.68 (anatomic site), +1.90
(findings), +1.32 (lesion reasoning), and +1.32 (final diagnosis),
all g<0.001. Taken together, these deltas indicate that
OpenAl-03 is the most reliable free-text interpreter, with the
largest, statistically robust gains in content-heavy domains
(Findings —» Reasoning — Diagnosis). The significance pattern
of the Wilcoxon signed-rank tests was consistent with that of
the paired t tests.

Intraclass correlation coefficients demonstrated excellent
interrater reliability across both model and question domains.
Of the 16 intraclass correlation coefficient values, 14 ranged
from 0.82 to 0.94, indicating high consistency among raters
(Table S3 in Multimedia Appendix 1).

Shihet a

M odel Satisfaction Rates

Satisfaction rates for each question across models closely
paralleled mean scores of the Likert scale (Figure 3). Overall,
satisfaction ranked anatomic site > findings > lesion reasoning
= final diagnosis, consistent with mean-score trends. Anatomic
site showed uniformly high satisfaction for the top 3 models
(339/401, =85%), while MedGemma-27B was much lower
(184/401, 46%). For findings, OpenAl-03 (305/401, 76%) and
ChatGPT-40 (297/401, 74%) outperformed Gemini 2.5 Pro
(277/401, 69%) and MedGemma-27B (92/401, 23%; all q<0.01).
In lesion reasoning, OpenAl-03 (211/401, 53%) and
ChatGPT-40 (201/401, 53%) outperformed Gemini 2.5 Pro
(184/401, 46%; g=0.003 and g=0.002 vs Gemini 2.5 Pro,
respectively), while MedGemma-27B again had the lowest
performance (72/401, 18%). For fina diagnosis, satisfaction
was lowest overall but remained higher for OpenAl-03 and
ChatGPT-40 (192/401, =48%) than for Gemini 2.5 Pro (168/401,
42%) or MedGemma-27B (60/401, 15%).

Figure 3. Comparative satisfaction rates (% of cases with mean score >3) of multimodal large language models (MM-LLMs) for cystoscopic image
interpretation across 4 question domains. Asterisks denote significance for pairwise comparisons between the top 3 models. *<0.05, where q is the

false discovery rate (FDR)-adjusted P value.
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Subgroup Analysis of Final Diagnosis

When mean scoresfor final diagnosiswere stratified by finding
category (Figure 4 and Table 3), the largest intermodel
differences occurred in the normal and structure or outlet groups.
OpenAl-03 achieved the highest score for norma findings
(3.79), significantly outperforming ChatGPT-40 (2.92) and
Gemini 2.5 Pro (1.76; g<0.001). Conversely, Gemini 2.5 Pro

https://www.jmir.org/2026/1/e87193

scored best for structure or outlet findings (2.45), exceeding
OpenAl-03 (1.71) and ChatGPT-40 (1.45; g<0.001). For tumor
or neoplasm, ChatGPT-4o dlightly surpassed OpenAl-03 (3.32
vs 3.12; g=0.02), with Gemini 2.5 Pro showing comparable
performance (3.07). Inflammation or reaction and vascularity
categories both favored ChatGPT-40 and Gemini 2.5 Pro over
OpenAl-03, whereas deposits or foreign bodies showed minimal
differences among models.
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Figure 4. Subgroup analysis of mean final diagnosis scores across 6 cystoscopic finding categories (tumor or neoplasm, inflammation, deposits,
structure, vascularity, and normal) for 4 multimodal large language models (MM-LLMs). Asterisks denote significance for pairwise comparisons
between the top 3 models. *(<0.05, where q is the false discovery rate (FDR)-adjusted P value.
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Performance also varied by anatomic site (Figure 5 and Table (1.48; g=0.02), with Gemini 2.5 Pro intermediate (1.80). These
3). Gemini 2.5 Pro performed best in the prostate (2.95), site-specific trends suggest complementary strengths: Gemini
significantly exceeding OpenAl-03 (1.45) and ChatGPT-40 2.5 Pro performsrelatively better in structure-dominated prostate
(1.24; g<0.001). In the bladder, OpenAl-03 (3.04) and views, whereas OpenAl-03 and ChatGPT-40 perform best in
ChatGPT-40 (3.06) outperformed Gemini 2.5 Pro (2.64; bladder-focused interpretation.

0<0.001). For the urethra, OpenAl-03 (2) exceeded ChatGPT-40
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Figure 5. Subgroup analysis of mean final diagnosis scores across 3 anatomic sites (bladder, prostate, and urethra) for 4 multimodal large language
models (MM-LLMs). Asterisks denote significance for pairwise comparisons between the top 3 models. *g<0.05, where q is the false discovery rate

(FDR)-adjusted P value.
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Clinically Relevant Binary Endpoints

For the lesion-detection task in the whole test set, OpenAl-03
achieved the highest overall performance, with an accuracy of
88.3%, a Youden J of 0.650, and an MCC of 0.635, followed
by ChatGPT-40 and Gemini 2.5 Pro, while MedGemma-27B
performed the lowest (Table 4). OpenAl-03 demonstrated the

https://www.jmir.org/2026/1/e87193

most balanced profile (sensitivity 92% and specificity 73.1%),
whereas ChatGPT-40 showed higher sensitivity but lower
specificity (94.4% vs 44.2%). Gemini 2.5 Pro exhibited an
extreme trade-off—maximal sensitivity (99.7%) but very low
specificity (10.3%). MedGemma-27B produced the weakest
results overall (accuracy 45.6%, Youden J -0.103, and MCC
—0.081).
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Table 4. Binary classification performance of 4 multimodal large language models (MM-LLMs) in clinically relevant cystoscopic endpoints (strict

analysis).
Task and MM-LLM? VRRP (%)  Acct (%)  Sen®(%)  Spect(%)  PPVi(©@)  NPVI(%) Youdend' McC
Wholetest set (n=401)
Lesion detection (present vs absent)
OpenAl-03 100 88.3 92.0 731 934 68.7 0.650 0.635
ChatGPT-40 100 84.7 94.4 44.2 87.6 65.4 0.386 0.452
Gemini 2.5 Pro 100 82.3 99.7 10.3 821 88.9 0.100 0.266
MedGemma-27B 100 45.6 46.1 43.6 77.2 16.4 -0.103 -0.081
Tumor-like lesion subset (N=113)
Biopsy indication (yes or no): zero-shot prompting
OpenAl-03 99.1 735 82.2 57.5 77.9 63.9 0.397 0.407
ChatGPT-40 92.9 69.0 91.8 275 69.8 64.7 0.193 0.258
Gemini 2.5 Pro 100 70.8 86.3 425 733 63.0 0.288 0.323
MedGemma-27B 100 65.5 97.3 75 65.7 60.0 0.048 0.111
Biopsy indication (yes or no): in-context learning
OpenAl-03 100 76.1 80.8 67.5 81.9 65.6 0.483 0.481
ChatGPT-40 98.2 69.0 89.0 325 70.7 61.9 0.215 0.265
Gemini 2.5 Pro 100 69.0 75.3 575 76.4 56.1 0.328 0.327
MedGemma-27B 100 60.2 93.2 0.0 63.0 0.0 -0.069 -0.159
Presence of malignancy (yes or no): zero-shot prompting
OpenAl-03 99.1 62.8 79.6 475 58.1 71.8 0.271 0.285
ChatGPT-40 92.9 55.8 815 32.2 52.4 65.5 0.137 0.157
Gemini 2.5 Pro 100 61.1 87.0 37.3 56.0 75.9 0.243 0.278
MedGemma-27B 100 575 722 441 54.2 63.4 0.163 0.169
Presence of malignancy (yes or no): in-context learning
OpenAl-03 100 63.7 70.4 57.6 60.3 68.0 0.280 0.282
ChatGPT-40 98.2 59.3 61.1 57.6 56.9 61.8 0.187 0.187
Gemini 2.5 Pro 100 62.0 66.7 57.6 59.0 65.4 0.243 0.244
MedGemma-27B 100 52.2 87.0 20.3 50.0 63.2 0.074 0.099

3\IM-LLM: multimodal large language model.

bVRR: valid response rate. Valid response rate = (total - invalid) / total. Invalid denotes outputs failing to provide a single permissible choice.

Acc: accuracy.

dSen: sensitivity.

€Spe: specificity.

PPV: positive predictive value.

INPV: negative predictive value.
PYouden J: Youden J Index.

IMCC: Matthews correlation coefficient.

In the tumor-like lesion subset (N=113), OpenAl-03 again
achieved the highest Youden Jand M CC performance for both
biopsy-indication and malignancy endpoints, followed by
Gemini 2.5 Pro and ChatGPT-40, with MedGemma-27B |owest.
For biopsy indication, OpenAl-03 reached 73.5% accuracy
(Youden J=0.397 and MCC=0.407), demonstrating the best
specificity-sensitivity balance. ICL modestly improved
specificity and accuracy (Table 4). For malignancy detection,

https://www.jmir.org/2026/1/e87193
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OpenAl-o3 similarly performed best (accuracy 62.8%), followed
by Gemini 2.5 Pro and ChatGPT-40, whereasMedGemma-27B
underperformed (Tables $4-S5 in Multimedia Appendix 1).

Overall, OpenAl-03 demonstrated the most balanced diagnostic
performance across al 3 binary endpoints, consistently
achieving the highest Youden J, largely attributable to its
superior specificity (Figure 6). For lesion detection, specificity
reached 73.1%, significantly outperforming ChatGPT-40
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(44.2%; g<0.001) and Gemini 2.5 Pro (10.3%; g<0.001; Figure
6A). In biopsy indication, specificity was 57.5%, again higher
than ChatGPT-40 (27.5%; 4<0.001) and Gemini 2.5 Pro (42.5%;
0=0.047; Figure 6B). In malignancy prediction, OpenAl-03

Shihet a

maintained the highest specificity (47.5%) compared to
ChatGPT-40 (32.2%; g=0.042) and Gemini 2.5 Pro (37.3%;
0=0.21; Figure 6C). In contrast, MedGemma-27B demonstrated
limited generalizability despiteits medical-domain optimization.

Figure 6. Radar chartsillustrating diagnostic performance across 3 cystoscopic endpointsin classification tasks. Panels represent (A) lesion detection
(presence vsabsence), (B) biopsy indication (yesvsno), and (C) presence of malignancy (yesvsno). Five key metrics are visualized: accuracy, sensitivity,

specificity, Youden Jindex, and Matthews correlation coefficient (MCC).
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For the 7-class classification (n=113), OpenAl-03 remained the
top-performing model, although overall accuracy was modest,
improving only slightly with ICL (microaverage accuracy from
40.7% to 46% and MCC from 0.311 to 0.370) (Table 5).
Class-level performance was heterogeneous. In the zero-shot
setting, malignant categories (pUC and CIS) achieved relatively
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balanced sensitivity and specificity, whereas benign lesions
(cystitis, polyps, and papilloma) showed high specificity but
low sensitivity. Notably, non-U Ca were not recognized. ICL
mainly adjusted the sensitivity-specificity balance—enhancing
detection of polyps, papilloma, and NOTA while dlightly
reducing sensitivity for cystitis and CIS. However, non-U Ca
remained unrecognized.
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Table 5. Confusion matrix outlining the performance of OpenAl-03 in 7-class tumor-like lesion classification under zero-shot and in-context learning

prompting (strict analysis).

Actual Total
Cystitis Polyps Pepilloma 2 cs? Non-U ca® NOTA?
Predicted

Zero-shot prompting
Cystitis 6 1 1 0 2 1 3 14
Polyps 1 1 0 0 0 1 0 3
Papilloma 0 0 0 0 0 0 0 0
pucC 2 4 11 20 0 14 7 58
CIS 5 0 0 0 9 0 2 16
Non-U Ca 0 0 0 0 0 0 0 0
NOTA 4 1 0 0 5 1 10 21
Invalice 0 0 0 0 1 0 0 1
Total 18 7 12 20 17 17 22 113

icLf prompting
Cystitis 6 0 1 1 6 0 4 18
Polyps 0 3 0 0 0 3 0 6
Papilloma 0 0 3 0 0 0 0 3
pucC 2 4 8 19 0 12 4 49
CIS 7 0 0 0 7 0 0 14
Non-U Ca 0 0 0 0 0 0 0 0
NOTA 3 0 0 0 4 2 14 23
Total 18 7 12 20 17 17 22 113

Classification metrics

Zero-shot prompting
Accuracy 82.3 92.9 894 66.4 86.7 85.0 79.6 40.7
Sensitivity 333 14.3 0 100 52.9 0 455 40.7
Specificity 91.6 98.1 100 59.1 92.7 100 87.9 90.3
ppv" 42.9 333 0 345 56.3 0 47.6 41.1
NPV 87.9 94.5 89.4 100 91.8 85.0 87.0 90.1
Youden J 0.249 0.124 0 0.591 0.456 0 0.334 0.310
Mcck 0.277 0.186 0 0.452 0.468 0 0.340 0.311

ICL prompting
Accuracy 78.8 93.8 92.0 72.6 85.0 85.0 85.0 46.0
Sensitivity 333 42.9 25.0 95.0 412 0 63.6 46.0
Specificity 874 97.2 100 67.7 92.7 100 90.1 91.0
PPV 333 50.0 100 38.8 50 0.0 60.9 46.0
NPV 874 96.3 91.8 98.4 89.9 85.0 911 91.0
Youden J 0.207 0.400 0.250 0.627 0.339 0 0.538 0.370
MCC 0.207 0.430 0.479 0.483 0.368 0 0.529 0.370

3UC: papillary urothelial carcinoma.

bCIS: carcinomain situ.
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®Non-U Ca: non-urothelial carcinoma.

9dNOTA: none of the above.

€Invalid: model outputs failing to provide a single permissible choice.
flCcL: in-context learni ng.

9AVG: microaverage.

fppy: positive predictive value.

INPV: negative predictive value.

Iyouden J: Youden J Index.

KMCC: Matthews correlation coefficient.

The other 3 model s performed suboptimally and showed limited
responsiveness to |CL (Tables S6-S8 in Multimedia Appendix
1). In the zero-shot setting, microaveraged accuracy ranked as
follows: 36.3% (Gemini 2.5 Pro); 31.9% (ChatGPT-40), 28.3%
(MedGemma-27B), with Youden Jand M CC both 0.164-0.257.
Under ICL, accuracy was similar or dightly lower—34.5%
(Gemini 25 Pro), 31% (ChatGPT-40), and 27.4%
(MedGemma-27B)—with minimal shiftsin Youden Jand MCC
(0.153-0.236). Class-wise patterns were consistent: malignant
categories (pUC, CIS, and non-U Ca) showed the most balanced
sensitivity-specificity trade-offs, whereas benign entities
(cystitis, polyps, and papilloma) had low sensitivity but high
specificity.

Analysis of the NOTA Category

The NOTA category represents a unique “negative exclusion”
challenge. Previous research indicates that L L Ms often exhibit
abiastoward positive sel ection, struggling to confidently select
“None of the Above” even when accurate [24,25]. Our results
show that thisbiasis pervasive, affecting model s across different
architectures  (Tables S6-S8). Despite being a
reasoning-optimized model, Gemini 2.5 Pro aligned with the
genera-purpose ChatGPT-40 and the medical-specific
MedGemma-27B in exhibiting a “high specificity, low
sensitivity” pattern.  Specifically, Gemini 2.5 Pro and
ChatGPT-40 achieved high specificity (>97%) but low
sensitivity (9.5%-27.3%) across prompting strategies. The
open-weight MedGemma-27B exhibited the most severe
manifestation of this bias: while its specificity remained high
(98.9%), its sensitivity was only 13.6% in the zero-shot setting
and collapsed to 0% under ICL prompting. This indicates that
for models unable to effectively leverage negative logic, added
textual context may inadvertently reinforce positive selection
bias.

A distinct divergence was observed between the 2
reasoning-optimized models. In contrast to Gemini 2.5 Pro,
OpenAl-03 demonstrated superior handling of exclusion (Table
5). It achieved a significantly higher baseline sensitivity of
45.5% in the zero-shot setting. Moreover, while ICL yielded
negligible or detrimental effects for the other 3 models,
OpenAl-03'ssenditivity surged to 63.6% under ICL prompting.
This suggests that OpenAl-03's specific implementation of
chain-of-thought reasoning is critical for overcoming the
standard positive selection bias, allowing for robust diagnosis
through exclusion where other reasoning and general models
failed.

https://www.jmir.org/2026/1/e87193

Shihet a

Sensitivity Analysis: Conditional on Valid Responses
In the tumor-like lesion classification task, invalid (refusal)
outputs were uncommon: valid-response rates were =100% for
OpenAl-03, Gemini 2.5 Pro, and MedGemma-27B, whereas
ChatGPT-40 had the highest invalid rate (7.1%) in zero-shot
prompting. While excluding invalid responses can inflate
performance (introducing optimistic bias) relative to the strict
analysis, invalid outputs can be interpreted clinically as
abstention, which may be safer than guessing in a
human-in-the-loop workflow because it prompts clinician
confirmation. Accordingly, we report conditional-on-valid
performance to better reflect accuracy when the model provides
avalid output (Table S9 in Multimedia Appendix 1).

ChatGPT-40 showed the largest strict vs conditional-on-valid
differences, consistent with itslower valid-response rate (Table
4vsTable SOin MultimediaAppendix 1). Accuracy and Youden
Jincreased from 69% and 0.193 to 74.3% and 0.267 for biopsy
indication and from 55.8% and 0.137 to 60% and 0.205 for
malignancy. Seven-class changes were small, most notably
higher sensitivity for NOTA (from 13.6% to 15%) and cystitis
(from 11.1% to 14.3%), with microaverage sensitivity rising
from 31.9% to 34.3%.

ICL-focused takeaway across models was that text-only ICL
chiefly reweighted sensitivity-specificity rather than boosting
overall accuracy; modest gainsin benign or NOTA recognition
were offset by reduced sensitivity in key malignant classes.

Discussion

Principal Findings

This study is the first to benchmark SOTA MM-LLMs for
cystoscopic interpretation under a clinician-defined stress test
with rare and diagnostically difficult lesions. The rigorous,
blinded design enabled objective assessment of interpretive
reasoning and classification. Outputs were also mapped to
actionabl e binary endpoints and used to quantify theincremental
effect of text-based ICL over zero-shot prompting, thereby
revealing both strengths and current limitations of MM-LLMs
in real-world clinical tasks.

Overdl, OpenAl-03 demonstrated superior performance,
followed by ChatGPT-40 and Gemini 2.5 Pro, with
MedGemma-27B showing the most limited capabilities. The
results revealed a progressive declinein model performance as
diagnostic complexity increased—from anatomical recognition
to higher-order diagnostic synthesis. While models showed
meaningful strength in visual recognition and descriptive
reporting, performance in chalenging differential diagnosis
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remained modest, suggesting that current MM-LLMs function
best as assistive rather than autonomous diagnostic tools at
present.

Image I nterpretation and Lesion Classification Tasks

The freetext interpretation task assessed 4 domains of
increasing complexity—anatomic site, findings, lesion
reasoning, and final diagnosis—simulating real-world diagnostic
synthesis that integrates visual recognition with clinical
reasoning. Task satisfaction declined with increasing
complexity, from anatomic localization (~85%) to definitive
diagnosis (~45%). OpenAl-03 and ChatGPT-40 consistently
outperformed Gemini 2.5 Pro and MedGemma-27B, though
with distinct profiles: OpenAl-03 produced concise, accurate
descriptions with coherent diagnostic impressions and high
specificity for norma anatomy, while ChatGPT-40 showed
greater sensitivity for inflammatory and vascular findings. In
contrast, Gemini 2.5 Pro often overcalled minor irregularities
but performed better on prostate lesions, likely reflecting
prostate-predominant pretraining. These discrepanciesindicate
that MM-LLM behavior depends not only on recognition
accuracy but also on underlying reasoning logic, diagnostic
thresholds, and domain-specific pretraining.

Regarding clinical decision endpoints, the goal of cystoscopy
istoidentify abnormal lesions—particularly malignancies—so
that biopsies are performed when necessary while avoiding
unnecessary proceduresthat increase cost and risk. Thus, lesion
detection, biopsy indication, and malignancy presence were
defined askey clinical endpoints. OpenAl-o03 achieved the most
balanced performance across sensitivity, specificity, and Youden
J, outperforming ChatGPT-40 and Gemini 2.5 Pro, especialy
in specificity, by accurately distinguishing normal from
malignant cases—supporting appropriate biopsy
decision-making. These findings highlight the importance of
calibrating operating points to clinical priorities and suggest
that MM-LLMs, particularly OpenAl-03, can aid cystoscopic
decison-making when optimized for an appropriate
specificity-sensitivity balance.

The 7-class lesion classification task evaluated each model’s
ability to distinguish visualy and pathologicaly similar
tumor-like lesions. Models performed best on prevalent
malignant lesions (pUC) but struggled with benign mimickers
(polyps and papilloma) and rare entities (non-U Ca), often
misclassified as pUC—reflecting limited pretraining exposure
to uncommon classes. Asshown in Table 5, 14 of 17 non-U Ca
cases (82.4%) were predicted as pUC, a much more prevalent
bladder tumor. One plausible explanation isthat LLMs exhibit
a tendency to choose majority or high-frequency labels in
multiple-choice settings. When pretraining class distributions
areimbalanced, the token sequences corresponding to common
options (eg, “pUC") can carry higher previous probabilities,
biasing the model toward these answers irrespective of
correctness.  This phenomenon is often described as
majority-label bias or common-token bias [26].

On the other hand, the frequent misclassification of papilloma
aspUC highlightstheinherent challenge of distinguishing these
entities based solely on cystoscopic appearance—a difficulty
shared by human experts. Rather than indicating model failure,
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these confusion patterns reflect the substantial macroscopic
overlap between papilloma and low-grade pUC. While visual
distinction remains experimental, our study addressed this
clinical reality by grouping both entities under the “Biopsy
Indicated” category in the binary endpoint analysis. In that
context, the models successfully flagged these lesions for
histol ogic confirmation, aligning with standard safety protocols
despite the specific classification ambiguity. CIS, a flat,
high-grade, non-invasive UC subtype, was handled well by
OpenAl-03, achieving strong results (accuracy 86.7, sensitivity
52.9, specificity 92.7, and Youden J 0.46) despite diagnostic
difficulty. Overall, OpenAl-03 showed the most balanced
performance, particularly excelling in benign and NOTA
classifications, achieving higher specificity than ChatGPT-40
and Gemini 2.5 Pro.

Performance Disparity and the Role of the
Open-Weight Baseline

Although MedGemma-27B is a medical-specific model, its
performance trailed behind the general-purpose proprietary
models (OpenAl-03, ChatGPT-40, and Gemini 2.5 Pro). This
gap can be attributed to 2 primary factors. domain-specific data
misalignment and model scale. First, contrary to the expectation
that a medica model should inherently outperform general
models, MedGemma's training distribution did not encompass
the specific modality of cystoscopy. While its multimodal
components (SigLIP encoder) were rigorously pretrained on
diverse medical datasets—including chest X-rays, dermatol ogy
images, ophthalmology images, and histopathology
slides—endoscopic imagery was notably absent from its
pretraining corpus. Consequently, the model faced a“ zero-shot”
challengein adomain it had not explicitly learned, whereas the
massive general-purpose models likely benefited from broader
exposure to endoscopic images present in their web-scale
training data.

Second, asalocal and open-weight baseline, MedGemma-27B
(=27B parameters) operates with significantly constrained
capacity compared to the proprietary SOTA architectures. It
lacks the extensive parameter count, training budget, and
chain-of-thought optimization that allow models such as
OpenAl-03 to generalize across unseen tasks. Therefore, our
intent is not to claim parity with these massive systems, but to
establish a transparent performance floor for open-weight
deployment. Despitethe lower accuracy in thiszero-shot setting,
MedGemma-27B remains a critical benchmark for institutions
requiring on-premise, privacy-preserving solutions. Its
performance represents the current starting point for future
adaptation, such as LoRA fine-tuning or retrieval-augmented
prompting, rather than a direct competitor in raw reasoning

capability.
Comparing With Previous Studies

Guo et al. [17] reported comparable findings when evaluating
ChatGPT-4V (OpenAl) and Claude-3.5 (Anthropic) on 603
cystoscopic images, achieving accuracies of 82.8% and 79.8%
but with marked variability across conditions. Both models
performed well for cystitis and bladder tumors but poorly for
BPH and normal structures, indicating that general-purpose
LLMs detect major lesions with high sensitivity but struggle
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with subtle findings. Similar variability has been observed in
gastrointestinal endoscopy, where ChatGPT-4V showed mixed
accuracy across lesion types and underperformed relative to
tuned CNN models [27]. Recent work suggests that general
multimodal models such as Gemini 2.5 Pro may even surpass
specialized Al in certain “ edge cases’ [28]. Unlike task-specific
systems, these models can simultaneously classify images and
generate descriptive reasoning and management suggestions,
offering value for clinical interpretation and education.

EnhancingMM-LLM Performancein M edical-Specific
Domain

Several in-domain strategies can improve general-purpose
MM-LLMs without training from scratch, including ICL,
contrastive pretraining, and retrieval augmentation.

In our study, text-only ICL with brief cystoscopic tumor
descriptions had minimal impact, except for OpenAl-03.
Specificity rose dightly, and sensitivity improved for rare benign
lesions, but this was offset by reduced sensitivity for malignant
classes (pUC and ClS)—atrade-off in which stricter thresholds
reduce fal se positives and unnecessary biopsies, but risk missed
cancers. These findings indicate that text-only ICL confers
minimal benefit for image-dominant tasks. Notably, OpenAl-03
showed a modest gain in micro-average accuracy (0.41-0.46),
driven mainly by NOTA, likely reflecting its reasoning-oriented
architecture and moreflexible use of I CL as contextual support.

A likely reason for the limited effect is insufficient visual
grounding: text-only cues do not anchor the moddl’s attention
to class-defining morphology. In fine-grained visua
discrimination (eg, cystoscopic lesion typing), semantic hints
(eg, “papillary fronds’ and “flat erythematous base”) may not
map reliably to visua features unless those associations were
learned during pretraining; without image exemplars, the
model’s visual reasoning remains underconstrained.

Beyond text-only prompts, few-shot image-text exemplars
(multimodal ICL) can strengthen grounding and improve
accuracy. Presenting paired lesion images with diagnoses
exposes prototypical visual features and tightens the link
between morphol ogy and class semantics. Across histopathol ogy
imaging, image-text ICL has enabled ChatGPT-4V to approach
or surpass task-specific classifierswith only 5-10 examples per
class, markedly narrowing the gap between zero-shot and fully
supervised models [29].

In parallel, contrastive-learned encoders (eg, MedCLIP) [30]
and multimodal retrieval augmentation [31] can enrich
representations and factual grounding, mitigating data scarcity
and hallucination. In summary, improving MM-LLM image
classificationin medical domainsis multifaceted, and combining
hybrid ICL (image + text), contrastive pretraining, and retrieval
augmentation offers a practica path to greater accuracy,
robustness, and interpretability in cystoscopic diagnosis.

Clinical Implications

MM-LLMsoffer greater flexibility than task-specific endoscopy
Al by combining visual recognition with contextual reasoning
and narrative  explanation. They can  interpret
morphol ogy-diverse findings and integrate relevant clinical text,
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supporting a more context-aware understanding. Our results
suggest potential applications in education and workflow
support, including serving as virtual tutors for trainees and
automating report generation to reduce workload and standardize
documentation. However, their moderate diagnostic accuracy,
particularly for rare or subtle lesions, limitstheir current use as
autonomous diagnostic tools. Future efforts should focus on
vision-conditioned ICL, multimodal retrieval-augmented
training, and video-based modeling to enhance interpretive
stability and diagnostic confidence [30,31]. Integration with
patient-level data, cystoscopy-specific benchmark datasets, and
human-in-the-loop oversight will be critical to ensure clinical
safety and responsible implementation.

Limitations

This study has several methodological strengths, including an
unbiased and rigorous evaluation framework. The dual-task
design enabled simultaneous assessment of reasoning
transparency, adaptability, and accuracy—nhelping distinguish
superficial pattern recognition from genuine clinical
understanding. However, several limitations should be
acknowledged. First, our ICL implementation was text-based
only: models received brief written descriptions of tumor
features without any paired visual exemplars. As aresult, this
study evaluated “text-based ICL” rather than full multimodal
ICL, and the absence of a few-shot image or image-text
exampleslikely constrained themodels multimodal capahilities.
The modest gains observed with ICL in our experiments may
therefore underestimate the potential benefit of visual or hybrid
(image + text) ICL. Future work should directly compare
text-based, visual, and hybrid ICL strategies and explore
complementary approaches such as contrastive-learned encoders
and multimodal retrieval augmentation for cystoscopic
diagnosis. Second, because the raw test images were drawn
from heterogeneous sources, residual confounding from
source-related differences and image-quality artifacts cannot
be fully excluded. Although we applied a strict 3-layer quality
control pipeline—image exclusion criteria, standardized
preprocessing, and human verification of diagnostic utility—to
mitigate these effects, some bias related to image source
heterogeneity may remain. In addition, our evaluation relied on
static images; incorporating temporal cues from cystoscopy
videos may improve recognition of subtle or evolving lesions
and reduce misclassification. Third, our dataset has an enriched
abnormality prevalence (80.3%), substantially higher than that
of typical clinical populations (20%-30%). Consequently, the
reported positive predictive value and negative predictive value
are inflated and not generalizable; they should be interpreted
as dataset-specific rather than as estimates for real-world
screening or hematuria-clinic settings.

Conclusions

Using a clinically challenging, stresstest image set and a
rigorous blinded evaluation framework, this study
comprehensively assessed MM-LLMs for cystoscopic
interpretation and lesion classification. Among the evaluated
models, OpenAl-03 demonstrated the most balanced and
clinically coherent performance, followed by ChatGPT-40 and
Gemini 2.5 Pro. These findings highlight the meaningful
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assistive potential of MM-LLMs in generating interpretable  differential diagnoses remains modest and requires further
free-text rationales, supporting biopsy triage, and facilitating optimization before safe clinical integration.
training. However, their performance in truly difficult
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