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Abstract

Background: Cystoscopy remains the gold standard for diagnosing bladder lesions; however, its diagnostic accuracy is operator
dependent and prone to missing subtle abnormalities such as carcinoma in situ or misinterpreting mimic lesions (tumor,
inflammation, or normal variants). Artificial intelligence–based image-analysis systems are emerging, yet conventional models
remain limited to single tasks and cannot produce explanatory reports or articulate diagnostic reasoning. Multimodal large language
models (MM-LLMs) integrate visual recognition, contextual reasoning, and language generation, offering interpretive capabilities
beyond conventional artificial intelligence.

Objective: This study aims to rigorously evaluate state-of-the-art MM-LLMs for cystoscopic image interpretation and lesion
classification using clinician-defined stress-test datasets enriched with rare, diverse, and challenging lesions, focusing on diagnostic
accuracy, reasoning quality, and clinical relevance.

Methods: Four MM-LLMs (OpenAI-o3 and ChatGPT-4o [OpenAI]; Gemini 2.5 Pro and MedGemma-27B [Google]) were
evaluated under blinded, randomized procedures across two tasks: (1) free-text image interpretation for anatomic site, findings,
lesion reasoning, and final diagnosis (n=401) and (2) seven-class tumor-like lesion classification (n=113) within a multiple-choice
framework (cystitis, polyps, papilloma, papillary urothelial carcinoma, carcinoma in situ, non-urothelial carcinoma, and none of
the above). Three raters independently scored outputs using a 5-point Likert scale, and classification metrics (accuracy, sensitivity,
specificity, Youden J index (Youden J), and Matthews correlation coefficient [MCC]) were calculated for lesion detection, biopsy
indication, and malignancy endpoints. For optimization, model performance was compared between zero-shot and text-based
in-context learning prompts that were prefixed with brief descriptions of tumor features.

Results: The 401-image test set spanned 40 subcategories, with 322 (80.3%) containing abnormal findings in the image
interpretation task. OpenAI-o3 demonstrated strong reasoning, with high satisfaction for anatomy (339/401, 84.5%) and findings
(305/401, 76%), but lower satisfaction for lesion reasoning (211/401, 52.5%) and final diagnosis (193/401, 48.2%), indicating
increasing difficulty with higher-order synthesis. Mean Likert score differences (OpenAI-o3 minus Gemini 2.5 Pro) were +0.27
for findings (adjusted P value: q=0.002), +0.24 for lesion reasoning (q=0.047), and +0.19 for final diagnosis. For clinically
relevant endpoints in the full set, OpenAI-o3 achieved the most balanced performance, with lesion detection accuracy of 88.3%,
sensitivity of 92%, specificity of 73.1%, Youden J of 0.650, and MCC of 0.635. In 7-class tumor-like lesion classification,
OpenAI-o3 achieved accuracies of 73.5% for biopsy indication and 62.8% for malignancy, with a balanced sensitivity-specificity
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trade-off, outperforming other models. Notably, OpenAI-o3 performed best on prevalent malignant lesions. ChatGPT-4o and
Gemini 2.5 Pro showed high sensitivity but low specificity, whereas MedGemma-27B underperformed. In-context learning
improved OpenAI-o3 microaverage accuracy (40.7%→46.0%; MCC 0.311→0.370) but yielded only slight specificity gains and
minimal accuracy change in other models, likely constrained by the absence of paired image-text context.

Conclusions: MM-LLMs demonstrate meaningful assistive potential in generating interpretable cystoscopy free-text rationales
and supporting biopsy triage and training. However, performance in difficult differential diagnoses remains modest and requires
further optimization before safe clinical integration.

(J Med Internet Res 2026;28:e87193) doi: 10.2196/87193
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Introduction

Cystoscopy is one of the most frequently performed procedures
in urology [1]. Its effectiveness heavily depends on the
urologist’s experience, attention to detail, and interpretive skill,
making it both technically and diagnostically challenging [2].
Interobserver variability is common, and lesion characterization
(tumor vs inflammation vs normal variant) is not always
straightforward, often requiring clinical correlation. Bladder
cancer, the ninth most common cancer globally [3], relies
heavily on cystoscopy as the cornerstone for diagnosis,
treatment, and surveillance. However, studies report
false-negative rates ranging from 10%-40%, with white-light
cystoscopy missing up to one-third of carcinoma in situ (CIS)
cases and frequently overlooking small tumors [4]. Accordingly,
cystoscopic interpretation is a nuanced clinical process.

Artificial intelligence (AI)-assisted cystoscopic diagnosis and
decision-making can be decomposed into distinct tasks: lesion
detection (present vs absent), lesion classification, margin
segmentation, descriptive reporting, biopsy triage, final
diagnosis, and ultimately full report generation. Each task places
different demands on algorithms, ranging from visual
localization to semantic reasoning and clinical judgment.
Previous work in cystoscopy has predominantly framed the
problem as image classification or segmentation [5-9], often
using specialized vision pipelines that localize or outline lesions
but provide limited clinical context and have uncertain
generalizability across morphology-diverse appearances.

Evidence from other endoscopic domains provides a useful
benchmark. Task-tuned computer-aided detection systems in
colonoscopy, for example, improve clinically meaningful
endpoints such as polyp or adenoma detection in randomized
and real-world settings; however, these gains are achieved by
narrowly optimized, single-purpose models rather than by
systems capable of broader interpretive reasoning [10-14].

Against this background, multimodal large language models
(MM-LLMs) hold substantial potential [15]. By jointly
processing images and text, MM-LLMs can, in principle, “see
and say”: integrate visual features with medical knowledge,
generate free-text rationales, and condition decisions on clinical
context [16]. Early reports suggest encouraging aggregate
performance, but also reveal marked variability across lesions
and tasks, indicating a role as assistive rather than autonomous
readers at present [17].

Key gaps remain. First, it is unclear how state-of-the-art (SOTA)
MM-LLMs perform on morphology-diverse, clinically difficult
cystoscopic images curated as a stress test by domain experts.
Second, the alignment between their free-text reasoning and
expert judgment has not been systematically examined. Third,
the practical utility of in-context learning (ICL) in
cystoscopy—without task-specific fine-tuning—remains
uncertain [18].

To address these gaps, our goal was to characterize the current
capabilities and limitations of MM-LLMs in cystoscopic
interpretation and to outline directions for model strengthening
and additional adaptations required for safe clinical adoption.

Methods

Overview
Building on this objective, we (1) constructed a clinician-defined
stress test that reflects real-world interpretive difficulty and
spans benign and malignant lesions; (2) implemented a
rater-blinded, model-anonymized evaluation across 2
complementary tasks—free-text image interpretation (4
open-ended questions plus a binary lesion detection query) and
structured 7-class lesion classification; (3) mapped model
outputs to clinically actionable binary endpoints (biopsy
indication and malignancy); and (4) quantified the incremental
benefit of ICL over zero-shot prompting. The overall study
workflow is provided in Figure 1.
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Figure 1. Study flow diagram. Evaluation pipeline for cystoscopic image interpretation and tumor-like lesion classification using 4 multimodal large
language models (MM-LLMs). ICL: in-context learning; MCC: Matthews correlation coefficient; NPV: negative predictive value; PPV: positive
predictive value.

Curation of a Diverse Image Test Set

Inclusion Criteria and Diverse Lesion Coverage
We evaluated vision-enabled LLMs for cystoscopic image
interpretation and tumor-like lesion classification. To stress-test
model generalization, the test set was curated to maximize the
diversity of morphological patterns rather than mirror clinical

prevalence. Images were included only if they mapped to a
prespecified schema of lower urinary tract
presentations—normal anatomy, intraluminal nonmucosal
conditions, and focal mucosal lesions—with finer-grained
sublabels (eg, verumontanum, trabeculation, and papillary
urothelial carcinoma [pUC]). To extend beyond routine cases,
we deliberately sampled uncommon entities encountered in
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practice, including endometriosis, miscellaneous deposits,
fistulas, and erosion-related changes. This approach yielded a
corpus with broad lesion coverage suitable for rigorous
stress-testing cystoscopic interpretation.

Sources and Image Preprocessing
Images were curated between April and June 2025 from five
sources: (1) an industry archive of intra-operative images
captured on Karl-Storz endoscopes, (2) reference atlases (eg,
Springer’s Diagnostic Cystoscopy [19] and other urologic
textbooks), (3) deidentified cystoscopy images obtained from
websites, (4) open-access repositories accompanying
PubMed-indexed papers and public datasets, and (5) Creative
Commons–licensed surgical or teaching videos hosted on
YouTube (Google). A total of 500 images were curated, and 99
were excluded due to poor image quality or an ill-defined lesion.
The distribution of image sources and the memorization-test
results, which were used to evaluate potential data-leakage risk
from overlap with the 4 models’ pretraining corpora, are
summarized in Table S1 in Multimedia Appendix 1. Raw images
were center-cropped to a square aspect ratio, resized to 800×800
pixels, and saved as JPEG files. This standardized pipeline
harmonized the field of view and resolution across
heterogeneous sources and ensured uniform inputs for all
downstream model evaluations.

Multimodal LLMs
The evaluated MM-LLMs comprised 3 general-purpose models
and 1 open-weight, medical-specific baseline. Two
reasoning-optimized models—OpenAI-o3 [20] and Google
Gemini 2.5 Pro [21]—were selected for their native image
processing capabilities and emphasis on multistep reasoning.
These represent the SOTA reasoning MM-LLMs available
before July 2025. ChatGPT-4o (OpenAI) was included as a
general-purpose, nonreasoning MM-LLM optimized for
everyday assistance and among the earliest widely deployed
models capable of accepting image input. MedGemma-27B
(Google) [22] was intentionally included as a local and
open-weight baseline—an open-source medical model (~27B
parameters) suited for on-premises deployment and potential
clinical fine-tuning. Because its parameter count and training
budget are substantially smaller than the proprietary models
(undisclosed), MedGemma-27B serves as a baseline rather than
a capacity-matched comparator. Collectively, these systems
span closed-source production platforms and an open-weight
medical baseline, enabling a balanced, transparent comparison.

Study Design

Establishment of the Gold Standard
The reference standard diagnoses were determined through a
multiphase, consensus-based process. Two urological experts,
each with more than 25 years of clinical experience,
independently reviewed all cystoscopic images, blinded to each
other’s assessments. The initial interexpert agreement was
satisfactory (Cohen κ=0.81). In cases of disagreement, a
consensus meeting was convened to establish a single unified
diagnosis, integrating both normal anatomical features and
pathological findings.

Image Interpretation and Lesion Classification Tasks
For a comprehensive evaluation, we designed 2 complementary
tasks that reflect distinct components of diagnostic reasoning.
The first, the image interpretation task, evaluated each model’s
capacity for domain-specific interpretation, logical reasoning,
descriptive accuracy, and clinical judgment. The second, the
lesion classification task, assessed the model’s discriminative
performance in differential diagnosis. Together, these 2 tasks
provided a systematic assessment of MM-LLMs in both
free-form interpretation and constrained classification settings,
thereby capturing complementary dimensions of clinical
decision-making.

Image Interpretation Task
The task used a structured, stepwise, open-ended question
format. Each model was primed with a role-based instruction
(“Suppose you are a urologist”) and prompted with 4 sequential
open-ended questions addressing anatomical site (Q1), findings
(Q2), lesion reasoning (Q4), and final diagnosis (Q5). Q3 was
not an open-ended interpretation item; it was a binary
lesion-detection query (present or absent) embedded in the
Q1→Q5 chain-of-thought to assess abnormal-versus-normal
detection and was automatically graded against the gold
standard. Free-text outputs for Q1, Q2, Q4, and Q5 were
independently assessed by 3 raters (urology residents with 2-5
years of cystoscopy experience) using a 5-point Likert scale
(1=disagree, 2=somewhat disagree, 3=neutral, 4=somewhat
agree, and 5=agree).

Blinded and Randomized Evaluation Procedures
A dedicated evaluation software was developed to ensure
complete rater blinding and randomization of both image
presentation and model output order (Figure S1 in Multimedia
Appendix 1).

• Image-level randomization: the display order of images
was randomized once and shared across all raters. Each
evaluation screen presented only 1 cystoscopic image at a
time.

• Structured display: the upper panel displayed the image
and its gold-standard answers to 5 reference questions (4
open-ended and 1 binary detection). The lower panel
simultaneously presented anonymized text responses from
the 4 MM-LLMs.

• Model-level randomization and anonymization: for each
image, the order of model outputs was independently
shuffled to minimize position bias. Model identities were
fully anonymized to raters.

• Scoring process: raters independently scored the free-text
responses using the 5-point Likert scale. The binary
lesion-detection item (Q3) was automatically graded against
the reference standard and was not rated by humans.

Lesion Classification Task
The lesion classification task was conducted to evaluate the
models’ discriminative capacity. It simulates a clinical scenario
in which a urologist has already identified a tumor-like lesion
and requires a differential diagnosis. A subset of tumor-like
lesion images was used for this analysis. The task involved a
7-class multiple-choice framework comprising cystitis, polyps,
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papilloma, pUC, CIS, nonurothelial carcinoma (non-U Ca), and
none of the above (NOTA). Models were tested under 2
prompting strategies: zero-shot prompting and ICL. In the ICL
condition, a text-based description of tumor-related features
was incorporated into the prompt. This task aimed to assess
each model’s discriminative performance, adaptability to
structured clinical classification, and robustness across
prompting paradigms.

A subset of tumor-like lesion images was used for this task. The
7-class classification included cystitis, polyps, papilloma, pUC,
CIS, non-U Ca, and NOTA. Models were tested under 2
settings—zero-shot prompting and ICL with added
tumor-feature descriptions—to assess discriminative
performance.

Clinically Relevant Binary Endpoint Conversion
To mirror real-world cystoscopic decision-making when
tumor-like lesions are encountered, the 7-class classification
task was collapsed into 2 clinically oriented binary endpoints.
The first, the biopsy-indication endpoint, represented immediate
clinical decision-making: pUC, CIS, non-U Ca, papilloma, and
polyps were labeled as “biopsy indicated,” whereas cystitis and
NOTA were labeled as “biopsy not indicated.” The second, the
malignancy endpoint, classifies pUC, CIS, and non-U Ca as
malignant, and cystitis, polyps, papilloma, and NOTA as
nonmalignant. This mapping preserved the full 7-class
framework for granular analysis while providing pragmatic
outcomes aligned with bedside triage. Notably,
papilloma—though histologically benign—was categorized as
“biopsy indicated” to reflect the routine need for histologic
confirmation.

Prompt Design
The complete and exact prompt designs are detailed in the
Multimedia Appendix 1.

Prompt Design With Open-Ended Questions for Image
Interpretation
We used a role-based, zero-shot prompt tailored to cystoscopy.
The prompt primed domain reasoning (“Suppose you are a
urologist”) and briefly contextualized the procedure, followed
by stepwise instructions to encourage explicit intermediate
reasoning. The query comprised five domains: (1) anatomic site
(free text), (2) endoscopic findings (free text), (3) presence or
absence of a pathological lesion (binary), (4) lesion diagnostic
reasoning and justification if present (free text), and (5) final
diagnosis (free text).

Prompt Design for Tumor-Like Lesion Classification
Task With Multiple-Choice Diagnostic Framework
We compared 2 prompting strategies for cystoscopic diagnosis
of tumor-like lesions: zero-shot and ICL. Both adopted a
role-based instruction (“Suppose you are a urologist”). The
zero-shot prompt presented a single forced-choice 7-class label
set. In contrast, the ICL prompt prefixed brief text-based
descriptions of the 7 lesion classes before the same
multiple-choice query. Models were instructed to provide the
best diagnosis from the given options and include a concise
rationale grounded in endoscopic morphology.

Outcome Measures and Statistical Analysis
For each image-question-answer instance, the 3 raters’
Likert-scale ratings were averaged to obtain a single consensus
score. The distribution of these scores across the test set was
summarized using the mean and SD to describe the central
tendency and variability of model performance. To compare
performance among models, pairwise differences in scores were
analyzed using paired t tests. Results were reported as mean
differences with 95% CIs. Given the ordinal nature of
Likert-scale data, Wilcoxon signed-rank tests were conducted
as a sensitivity analysis. To account for the multiplicity of
pairwise comparisons across the top 3 performing models, the
Benjamini-Hochberg procedure was applied to control the false
discovery rate and mitigate type I error. Consequently, statistical
significance for all intermodel comparisons was defined as a
false discovery rate–adjusted P value (q value)<.05. Subgroup
analyses of final diagnosis were conducted according to
cystoscopic finding categories and anatomic sites, following
the same statistical procedures.

For interpretability, the mean Likert-scale score for each item
was further converted into a binary satisfaction outcome:
satisfactory if the mean score was >3 and unsatisfactory if ≤3.
The satisfaction rate (percentage of satisfactory responses) was
reported and used as a binary outcome in subsequent analyses.

The performance metrics for the classification tasks—including
binary domains (lesion detection: present vs absent, biopsy
indication: yes or no, and malignancy: yes or no) and the 7-class
lesion classification—were derived from confusion matrices.
Reported metrics included accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, Youden J,
and the Matthews correlation coefficient (MCC) [23]. Youden
J represents the overall diagnostic effectiveness of a test, defined
as (sensitivity + specificity – 1), and reflects the balance between
true-positive and true-negative rates. The MCC quantifies the
overall agreement between predicted and actual classifications
by incorporating all 4 components of the confusion matrix (true
or false positives and negatives). Metric comparisons were
conducted using the chi-square test.

For the 7-class task (n=113), models were instructed to select
exactly 1 forced-choice label from the prespecified options.
Outputs failing to provide a single permissible choice (eg,
refusals such as “I could not answer this question”) were coded
as invalid. To ensure a consistent head-to-head comparison and
minimize selection bias, the primary (strict) analysis used an
intent-to-treat approach: invalid outputs were retained in the
denominator and treated as incorrect predictions. However,
because an invalid output does not necessarily reflect an
incorrect diagnosis and may instead represent
abstention—potentially safer than guessing in a
human-in-the-loop workflow—we conducted a secondary
sensitivity analysis, recalculating performance metrics
conditional on valid responses only. All statistical analyses were
conducted using SAS software (version 9.4; SAS Institute Inc).

Ethical Considerations
The Research Ethics Committee A of National Taiwan
University Hospital determined that this study was exempt from
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human participant research (NTUH-REC 202507210W).
Informed consent was waived because this study involved a
secondary analysis of deidentified cystoscopic images with no
patient contact or intervention; for publicly available or
published images, consent for the original collection followed
the source publication, and the exemption permitted secondary
analysis without additional consent. All images were
deidentified, stored on access-controlled institutional systems,
and reported only in aggregate. No participants were recruited,
and no compensation was provided; all figures were reviewed
to ensure no individual is identifiable.

Results

Distribution of the Whole Test Set and the Tumor-like
Lesion Subset
Among 401 cystoscopic images, most originated from the
bladder (n=329), followed by the prostate (n=41) and urethra
(n=31). Abnormal findings were present in 322 (80.3%) images.
The most common categories were tumor or neoplasm (n=126),
structural or outlet abnormalities (n=76), inflammatory or
reactive changes (n=69), deposits or foreign bodies (n=43), and
vascular lesions (n=8); 79 (19.7%) images showed normal
anatomy (Table 1). Table 1 provides the detailed distribution
of finding subcategories, reflecting diagnostic diversity and
difficulty.
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Table 1. Detailed distribution of cystoscopic finding subcategories in the whole test dataset (N=401). This table provides a comprehensive breakdown
of all observed cystoscopic findings across 3 hierarchical levels (normality, categories, and subcategories) and anatomic sites (bladder, prostate, and
urethra). Values are presented as n (intracategory %); percentages represent the proportion of each subcategory within its respective parent category.
The inclusion of both benign and malignant findings illustrates the heterogeneity of endoscopic presentations and underscores the diagnostic complexity
represented in the dataset.

TotalUrethraProstateBladderAnatomic site

Finding normality, categories, and subcategories, n (intracategory %)

3222435263Abnormal

12612 (100)—114 (100)Tumor or neoplasm

7——7 (6.1)Bladder polyp

17——17 (14.9)Suspected bladder CISa

2——2 (1.8)Suspected nephrogenic adenoma

12——12 (10.5)Papilloma

52——52 (45.6)Papillary urothelial carcinoma

18——18 (15.8)Nonurothelial carcinoma

5——5 (4.4)Endometriosis

1——1 (0.9)Teratoma

44 (33.3)——Urethral polyp

88 (66.7)——Urethral tumor

691 (100)1 (100)67 (100)Inflammation or reaction

4——4 (6.0)Bladder amyloidosis

6——6 (9.0)Bladder keratinizing

5——5 (7.5)Bladder malakoplakia squamous metaplasia

1——1 (1.5)Bladder mucosal break

26——26 (38.8)Cystitis

5——5 (7.5)Hemorrhagic cystitis

10——10 (14.9)Suspected ICb

7——7 (10.4)Suspected radiation cystitis

3——3 (4.5)Suspected Schistosomiasis

21 (100)1 (100)—Urethritis

432 (100)2 (100)39 (100)Deposits or foreign bodies

5——5 (12.8)Bladder encrustation

141 (50)1 (50)12 (30.8)Blood clot

81 (50)—7 (17.9)Foreign body

16—1 (50)15 (38.5)Stone

769 (100)32 (100)35 (100)Structure or outlet

4——4 (11.4)Bladder diverticulum

4——4 (11.4)Bladder neck contracture

12——12 (34.3)Bladder scar

2——2 (5.7)Bladder trabeculation

4——4 (11.4)Vesicoureteral reflux

6——6 (17.1)Ureterocele

52 (22.2)—3 (8.6)Suspected fistula

31—31 (96.9)—Prostate enlargement

1—1 (3.1)—Prostatic cyst

J Med Internet Res 2026 | vol. 28 | e87193 | p. 7https://www.jmir.org/2026/1/e87193
(page number not for citation purposes)

Shih et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


TotalUrethraProstateBladderAnatomic site

44 (44.4)——Urethra stricture

11 (11.1)——Urethral cyst

22 (22.2)——Urethral trauma

8——8 (100)Vascularity

1——1 (12.5)Bladder hemangioma

4——4 (50.0)Bladder telangiectasia

3——3 (37.5)Bladder varices

797666Normal

aCIS: carcinoma in situ.
bIC: interstitial cystitis.

The tumor-like lesion subset included 113 visually and
pathologically similar images spanning both benign and
malignant lesions: cystitis (n=18), polyps (n=7), papilloma

(n=12), pUC (n=20), CIS (n=17), non-U Ca (n=17), and NOTA
(n=22) (Table 2).

Table 2. Distribution of the tumor-like lesion subset (n=113) used for the 7-class lesion classification task, representing a focused subset of the whole
test dataset. The tumor-like lesion subset comprised 18 cystitis (15.9%), 7 polyps (6.2%), 12 papilloma (10.6%), 20 papillary urothelial carcinoma
(pUC; 17.7%), 17 carcinoma in situ (CIS; 15%), 17 non-urothelial carcinoma (non-U Ca; 15%), and 22 none of the above (NOTA; 19.5%).

Value, n (%)Lesion type

18 (15.9)Cystitis

7 (6.2)Polyps

12 (10.6)Papilloma

20 (17.7)pUCa

17 (15)CISb

17 (15)Non-U Cac

22 (19.5)NOTAd

113 (100)Total

apUC: papillary urothelial carcinoma.
bCIS: carcinoma in situ.
cNon-U Ca: non-urothelial carcinoma.
dNOTA: none of the above.

Comparative Mean Scores of LLMs in Image
Interpretation
Among the whole test set (n=401), MM-LLMs demonstrated
progressively lower performance as task complexity increased
(Table 3 and Figure 2). Mean Likert-scale scores declined from
anatomic site recognition (≈ 4.1) to findings (≈ 3.4-3.7), lesion
reasoning (≈ 2.7-2.9), and final diagnosis (≈ 2.6-2.8).
OpenAI-o3, ChatGPT-4o, and Gemini 2.5 Pro achieved
comparable accuracy in anatomical localization, while
OpenAI-o3 showed the highest overall consistency and clarity

in lesion description. Statistically significant differences
emerged in the findings, lesion reasoning, and final diagnosis
domains, in which OpenAI-o3 outperformed Gemini 2.5 Pro
and the medical-specific MedGemma-27B. Notably,
MedGemma-27B lagged substantially behind the
general-purpose MM-LLMs across all categories, suggesting
that its limited training scope constrained both descriptive
precision and diagnostic reasoning. These results indicate that
reasoning-optimized general-purpose MM-LLMs currently
outperform open-source, domain-specific models in free-text
cystoscopic interpretation tasks.
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Table 3. Performance of 4 multimodal large language models (MM-LLMs) in cystoscopic image interpretation, presented as mean Likert scores and
SDs across open-ended questions and final-diagnosis subgroups.

MedGemma-27B,
mean (SD)

Gemini 2.5 Pro,
mean (SD)

ChatGPT-4o,
mean (SD)

OpenAI-o3,
mean (SD)

ValueQuestion and subgroup

Whole test set (n=401)

Questions

2.45 (1.37)4.10 (1.21)4.06 (1.20)4.13 (1.24)401Q1: anatomic site

1.80 (1.03)3.42 (1.30)3.54 (1.25)3.69 (1.23)401Q2: findings

1.62 (1.11)2.70 (1.48)2.89 (1.49)2.94 (1.57)401Q4: lesion reasoning

1.48 (0.93)2.61 (1.51)2.75 (1.51)2.79 (1.59)401Q5: final diagnosis

Q5. final diagnosis

Subgrouping by findings

2.06 (1.18)3.07 (1.51)3.32 (1.36)3.12 (1.44)126Tumor or neoplasm

1.19 (0.45)2.87 (1.29)2.82 (1.30)2.34 (1.21)69Inflammation or reaction

1.07 (0.26)2.64 (1.64)2.97 (1.52)2.77 (1.59)43Deposits or foreign bodies

1.03 (0.10)2.45 (1.67)1.45 (0.69)1.71 (1.13)76Structure or outlet

1.29 (0.70)2.75 (0.87)2.75 (0.71)2.42 (1.05)8Vascularity

1.49 (1.04)1.76 (1.13)2.92 (1.81)3.79 (1.76)79Normal

Subgrouping by anatomic site

1.56 (1.00)2.64 (1.47)3.06 (1.46)3.04 (1.56)329Bladder

1.09 (0.31)2.95 (1.79)1.24 (0.62)1.45 (1.02)41Prostate

1.12 (0.38)1.80 (1.27)1.48 (0.91)2 (1.34)31Urethra

Figure 2. Comparative mean scores of multimodal large language models (MM-LLMs) for cystoscopic image interpretation across 4 question domains
in the whole test set. Asterisks denote statistically significant pairwise differences among the top 3 models. *q<0.05, where q is the false discovery rate
(FDR)-adjusted P value.

Mean-score pairwise comparisons among models (mean-score
deltas) are provided in Table S2 in Multimedia Appendix 1. A
0.2-point difference on the 5-point Likert score corresponds
approximately to a 5-point difference on a 100-point scale. The
matrix of column-row differences confirmed OpenAI-o3’s edge

across open-question domains. Versus Gemini 2.5 Pro,
OpenAI-o3 scored higher by +0.27 on findings (q=0.002), +0.24
on lesion reasoning (q=0.047), +0.03 on anatomic site, and
+0.19 on final diagnosis (not significant). Against ChatGPT-4o,
OpenAI-o3 held a small but consistent advantage on findings
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(+0.15, q=0.004) with near-parity on anatomic site, lesion
reasoning, and final diagnosis (+0.07, +0.06, +0.04; not
significant). All general-purpose models substantially
outperformed the medical-specific MedGemma-27B;
OpenAI-o3’s margins were +1.68 (anatomic site), +1.90
(findings), +1.32 (lesion reasoning), and +1.32 (final diagnosis),
all q<0.001. Taken together, these deltas indicate that
OpenAI-o3 is the most reliable free-text interpreter, with the
largest, statistically robust gains in content-heavy domains
(Findings → Reasoning → Diagnosis). The significance pattern
of the Wilcoxon signed-rank tests was consistent with that of
the paired t tests.

Intraclass correlation coefficients demonstrated excellent
interrater reliability across both model and question domains.
Of the 16 intraclass correlation coefficient values, 14 ranged
from 0.82 to 0.94, indicating high consistency among raters
(Table S3 in Multimedia Appendix 1).

Model Satisfaction Rates
Satisfaction rates for each question across models closely
paralleled mean scores of the Likert scale (Figure 3). Overall,
satisfaction ranked anatomic site > findings > lesion reasoning
≈ final diagnosis, consistent with mean-score trends. Anatomic
site showed uniformly high satisfaction for the top 3 models
(339/401, ≈85%), while MedGemma-27B was much lower
(184/401, 46%). For findings, OpenAI-o3 (305/401, 76%) and
ChatGPT-4o (297/401, 74%) outperformed Gemini 2.5 Pro
(277/401, 69%) and MedGemma-27B (92/401, 23%; all q<0.01).
In lesion reasoning, OpenAI-o3 (211/401, 53%) and
ChatGPT-4o (201/401, 53%) outperformed Gemini 2.5 Pro
(184/401, 46%; q=0.003 and q=0.002 vs Gemini 2.5 Pro,
respectively), while MedGemma-27B again had the lowest
performance (72/401, 18%). For final diagnosis, satisfaction
was lowest overall but remained higher for OpenAI-o3 and
ChatGPT-4o (192/401, ≈48%) than for Gemini 2.5 Pro (168/401,
42%) or MedGemma-27B (60/401, 15%).

Figure 3. Comparative satisfaction rates (% of cases with mean score >3) of multimodal large language models (MM-LLMs) for cystoscopic image
interpretation across 4 question domains. Asterisks denote significance for pairwise comparisons between the top 3 models. *q<0.05, where q is the
false discovery rate (FDR)-adjusted P value.

Subgroup Analysis of Final Diagnosis
When mean scores for final diagnosis were stratified by finding
category (Figure 4 and Table 3), the largest intermodel
differences occurred in the normal and structure or outlet groups.
OpenAI-o3 achieved the highest score for normal findings
(3.79), significantly outperforming ChatGPT-4o (2.92) and
Gemini 2.5 Pro (1.76; q<0.001). Conversely, Gemini 2.5 Pro

scored best for structure or outlet findings (2.45), exceeding
OpenAI-o3 (1.71) and ChatGPT-4o (1.45; q<0.001). For tumor
or neoplasm, ChatGPT-4o slightly surpassed OpenAI-o3 (3.32
vs 3.12; q=0.02), with Gemini 2.5 Pro showing comparable
performance (3.07). Inflammation or reaction and vascularity
categories both favored ChatGPT-4o and Gemini 2.5 Pro over
OpenAI-o3, whereas deposits or foreign bodies showed minimal
differences among models.
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Figure 4. Subgroup analysis of mean final diagnosis scores across 6 cystoscopic finding categories (tumor or neoplasm, inflammation, deposits,
structure, vascularity, and normal) for 4 multimodal large language models (MM-LLMs). Asterisks denote significance for pairwise comparisons
between the top 3 models. *q<0.05, where q is the false discovery rate (FDR)-adjusted P value.

Performance also varied by anatomic site (Figure 5 and Table
3). Gemini 2.5 Pro performed best in the prostate (2.95),
significantly exceeding OpenAI-o3 (1.45) and ChatGPT-4o
(1.24; q<0.001). In the bladder, OpenAI-o3 (3.04) and
ChatGPT-4o (3.06) outperformed Gemini 2.5 Pro (2.64;
q<0.001). For the urethra, OpenAI-o3 (2) exceeded ChatGPT-4o

(1.48; q=0.02), with Gemini 2.5 Pro intermediate (1.80). These
site-specific trends suggest complementary strengths: Gemini
2.5 Pro performs relatively better in structure-dominated prostate
views, whereas OpenAI-o3 and ChatGPT-4o perform best in
bladder-focused interpretation.
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Figure 5. Subgroup analysis of mean final diagnosis scores across 3 anatomic sites (bladder, prostate, and urethra) for 4 multimodal large language
models (MM-LLMs). Asterisks denote significance for pairwise comparisons between the top 3 models. *q<0.05, where q is the false discovery rate
(FDR)-adjusted P value.

Clinically Relevant Binary Endpoints
For the lesion-detection task in the whole test set, OpenAI-o3
achieved the highest overall performance, with an accuracy of
88.3%, a Youden J of 0.650, and an MCC of 0.635, followed
by ChatGPT-4o and Gemini 2.5 Pro, while MedGemma-27B
performed the lowest (Table 4). OpenAI-o3 demonstrated the

most balanced profile (sensitivity 92% and specificity 73.1%),
whereas ChatGPT-4o showed higher sensitivity but lower
specificity (94.4% vs 44.2%). Gemini 2.5 Pro exhibited an
extreme trade-off—maximal sensitivity (99.7%) but very low
specificity (10.3%). MedGemma-27B produced the weakest
results overall (accuracy 45.6%, Youden J –0.103, and MCC
–0.081).
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Table 4. Binary classification performance of 4 multimodal large language models (MM-LLMs) in clinically relevant cystoscopic endpoints (strict
analysis).

MCCiYouden JhNPVg (%)PPVf (%)Spece (%)Send (%)Accc (%)VRRb (%)Task and MM-LLMa

Whole test set (n=401)

Lesion detection (present vs absent)

0.6350.65068.793.473.192.088.3100OpenAI-o3

0.4520.38665.487.644.294.484.7100ChatGPT-4o

0.2660.10088.982.110.399.782.3100Gemini 2.5 Pro

-0.081-0.10316.477.243.646.145.6100MedGemma-27B

Tumor-like lesion subset (n=113)

Biopsy indication (yes or no): zero-shot prompting

0.4070.39763.977.957.582.273.599.1OpenAI-o3

0.2580.19364.769.827.591.869.092.9ChatGPT-4o

0.3230.28863.073.342.586.370.8100Gemini 2.5 Pro

0.1110.04860.065.77.597.365.5100MedGemma-27B

Biopsy indication (yes or no): in-context learning

0.4810.48365.681.967.580.876.1100OpenAI-o3

0.2650.21561.970.732.589.069.098.2ChatGPT-4o

0.3270.32856.176.457.575.369.0100Gemini 2.5 Pro

-0.159-0.0690.063.00.093.260.2100MedGemma-27B

Presence of malignancy (yes or no): zero-shot prompting

0.2850.27171.858.147.579.662.899.1OpenAI-o3

0.1570.13765.552.432.281.555.892.9ChatGPT-4o

0.2780.24375.956.037.387.061.1100Gemini 2.5 Pro

0.1690.16363.454.244.172.257.5100MedGemma-27B

Presence of malignancy (yes or no): in-context learning

0.2820.28068.060.357.670.463.7100OpenAI-o3

0.1870.18761.856.957.661.159.398.2ChatGPT-4o

0.2440.24365.459.057.666.762.0100Gemini 2.5 Pro

0.0990.07463.250.020.387.052.2100MedGemma-27B

aMM-LLM: multimodal large language model.
bVRR: valid response rate. Valid response rate = (total - invalid) / total. Invalid denotes outputs failing to provide a single permissible choice.
cAcc: accuracy.
dSen: sensitivity.
eSpe: specificity.
fPPV: positive predictive value.
gNPV: negative predictive value.
hYouden J: Youden J Index.
iMCC: Matthews correlation coefficient.

In the tumor-like lesion subset (n=113), OpenAI-o3 again
achieved the highest Youden J and MCC performance for both
biopsy-indication and malignancy endpoints, followed by
Gemini 2.5 Pro and ChatGPT-4o, with MedGemma-27B lowest.
For biopsy indication, OpenAI-o3 reached 73.5% accuracy
(Youden J=0.397 and MCC=0.407), demonstrating the best
specificity-sensitivity balance. ICL modestly improved
specificity and accuracy (Table 4). For malignancy detection,

OpenAI-o3 similarly performed best (accuracy 62.8%), followed
by Gemini 2.5 Pro and ChatGPT-4o, whereas MedGemma-27B
underperformed (Tables S4-S5 in Multimedia Appendix 1).

Overall, OpenAI-o3 demonstrated the most balanced diagnostic
performance across all 3 binary endpoints, consistently
achieving the highest Youden J, largely attributable to its
superior specificity (Figure 6). For lesion detection, specificity
reached 73.1%, significantly outperforming ChatGPT-4o
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(44.2%; q<0.001) and Gemini 2.5 Pro (10.3%; q<0.001; Figure
6A). In biopsy indication, specificity was 57.5%, again higher
than ChatGPT-4o (27.5%; q<0.001) and Gemini 2.5 Pro (42.5%;
q=0.047; Figure 6B). In malignancy prediction, OpenAI-o3

maintained the highest specificity (47.5%) compared to
ChatGPT-4o (32.2%; q=0.042) and Gemini 2.5 Pro (37.3%;
q=0.21; Figure 6C). In contrast, MedGemma-27B demonstrated
limited generalizability despite its medical-domain optimization.

Figure 6. Radar charts illustrating diagnostic performance across 3 cystoscopic endpoints in classification tasks. Panels represent (A) lesion detection
(presence vs absence), (B) biopsy indication (yes vs no), and (C) presence of malignancy (yes vs no). Five key metrics are visualized: accuracy, sensitivity,
specificity, Youden J index, and Matthews correlation coefficient (MCC).

Seven-Class Tumor-Like Lesion Classification
For the 7-class classification (n=113), OpenAI-o3 remained the
top-performing model, although overall accuracy was modest,
improving only slightly with ICL (microaverage accuracy from
40.7% to 46% and MCC from 0.311 to 0.370) (Table 5).
Class-level performance was heterogeneous. In the zero-shot
setting, malignant categories (pUC and CIS) achieved relatively

balanced sensitivity and specificity, whereas benign lesions
(cystitis, polyps, and papilloma) showed high specificity but
low sensitivity. Notably, non-U Ca were not recognized. ICL
mainly adjusted the sensitivity-specificity balance—enhancing
detection of polyps, papilloma, and NOTA while slightly
reducing sensitivity for cystitis and CIS. However, non-U Ca
remained unrecognized.
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Table 5. Confusion matrix outlining the performance of OpenAI-o3 in 7-class tumor-like lesion classification under zero-shot and in-context learning
prompting (strict analysis).

TotalActual

NOTAdNon-U CacCISbpUCaPapillomaPolypsCystitis

Predicted

Zero-shot prompting

143120116Cystitis

30100011Polyps

00000000Papilloma

587140201142pUC

162090005CIS

00000000Non-U Ca

2110150014NOTA

10010000Invalide

1132217172012718Total

ICLf prompting

184061106Cystitis

60300030Polyps

30000300Papilloma

49412019842pUC

140070007CIS

00000000Non-U Ca

2314240003NOTA

1132217172012718Total

Classification metrics

Zero-shot prompting

40.779.685.086.766.489.492.982.3Accuracy

40.745.5052.9100014.333.3Sensitivity

90.387.910092.759.110098.191.6Specificity

41.147.6056.334.5033.342.9PPVh

90.187.085.091.810089.494.587.9NPVi

0.3100.33400.4560.59100.1240.249Youden Jj

0.3110.34000.4680.45200.1860.277MCCk

ICL prompting

46.085.085.085.072.692.093.878.8Accuracy

46.063.6041.295.025.042.933.3Sensitivity

91.090.110092.767.710097.287.4Specificity

46.060.90.05038.810050.033.3PPV

91.091.185.089.998.491.896.387.4NPV

0.3700.53800.3390.6270.2500.4000.207Youden J

0.3700.52900.3680.4830.4790.4300.207MCC

apUC: papillary urothelial carcinoma.
bCIS: carcinoma in situ.
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cNon-U Ca: non-urothelial carcinoma.
dNOTA: none of the above.
eInvalid: model outputs failing to provide a single permissible choice.
fICL: in-context learning.
gAVG: microaverage.
hPPV: positive predictive value.
iNPV: negative predictive value.
jYouden J: Youden J Index.
kMCC: Matthews correlation coefficient.

The other 3 models performed suboptimally and showed limited
responsiveness to ICL (Tables S6-S8 in Multimedia Appendix
1). In the zero-shot setting, microaveraged accuracy ranked as
follows: 36.3% (Gemini 2.5 Pro); 31.9% (ChatGPT-4o), 28.3%
(MedGemma-27B), with Youden J and MCC both 0.164-0.257.
Under ICL, accuracy was similar or slightly lower—34.5%
(Gemini 2.5 Pro), 31% (ChatGPT-4o), and 27.4%
(MedGemma-27B)—with minimal shifts in Youden J and MCC
(0.153-0.236). Class-wise patterns were consistent: malignant
categories (pUC, CIS, and non-U Ca) showed the most balanced
sensitivity-specificity trade-offs, whereas benign entities
(cystitis, polyps, and papilloma) had low sensitivity but high
specificity.

Analysis of the NOTA Category
The NOTA category represents a unique “negative exclusion”
challenge. Previous research indicates that LLMs often exhibit
a bias toward positive selection, struggling to confidently select
“None of the Above” even when accurate [24,25]. Our results
show that this bias is pervasive, affecting models across different
architectures (Tables S6-S8). Despite being a
reasoning-optimized model, Gemini 2.5 Pro aligned with the
general-purpose ChatGPT-4o and the medical-specific
MedGemma-27B in exhibiting a “high specificity, low
sensitivity” pattern. Specifically, Gemini 2.5 Pro and
ChatGPT-4o achieved high specificity (>97%) but low
sensitivity (9.5%-27.3%) across prompting strategies. The
open-weight MedGemma-27B exhibited the most severe
manifestation of this bias: while its specificity remained high
(98.9%), its sensitivity was only 13.6% in the zero-shot setting
and collapsed to 0% under ICL prompting. This indicates that
for models unable to effectively leverage negative logic, added
textual context may inadvertently reinforce positive selection
bias.

A distinct divergence was observed between the 2
reasoning-optimized models. In contrast to Gemini 2.5 Pro,
OpenAI-o3 demonstrated superior handling of exclusion (Table
5). It achieved a significantly higher baseline sensitivity of
45.5% in the zero-shot setting. Moreover, while ICL yielded
negligible or detrimental effects for the other 3 models,
OpenAI-o3’s sensitivity surged to 63.6% under ICL prompting.
This suggests that OpenAI-o3’s specific implementation of
chain-of-thought reasoning is critical for overcoming the
standard positive selection bias, allowing for robust diagnosis
through exclusion where other reasoning and general models
failed.

Sensitivity Analysis: Conditional on Valid Responses
In the tumor-like lesion classification task, invalid (refusal)
outputs were uncommon: valid-response rates were ≈100% for
OpenAI-o3, Gemini 2.5 Pro, and MedGemma-27B, whereas
ChatGPT-4o had the highest invalid rate (7.1%) in zero-shot
prompting. While excluding invalid responses can inflate
performance (introducing optimistic bias) relative to the strict
analysis, invalid outputs can be interpreted clinically as
abstention, which may be safer than guessing in a
human-in-the-loop workflow because it prompts clinician
confirmation. Accordingly, we report conditional-on-valid
performance to better reflect accuracy when the model provides
a valid output (Table S9 in Multimedia Appendix 1).

ChatGPT-4o showed the largest strict vs conditional-on-valid
differences, consistent with its lower valid-response rate (Table
4 vs Table S9 in Multimedia Appendix 1). Accuracy and Youden
J increased from 69% and 0.193 to 74.3% and 0.267 for biopsy
indication and from 55.8% and 0.137 to 60% and 0.205 for
malignancy. Seven-class changes were small, most notably
higher sensitivity for NOTA (from 13.6% to 15%) and cystitis
(from 11.1% to 14.3%), with microaverage sensitivity rising
from 31.9% to 34.3%.

ICL-focused takeaway across models was that text-only ICL
chiefly reweighted sensitivity-specificity rather than boosting
overall accuracy; modest gains in benign or NOTA recognition
were offset by reduced sensitivity in key malignant classes.

Discussion

Principal Findings
This study is the first to benchmark SOTA MM-LLMs for
cystoscopic interpretation under a clinician-defined stress test
with rare and diagnostically difficult lesions. The rigorous,
blinded design enabled objective assessment of interpretive
reasoning and classification. Outputs were also mapped to
actionable binary endpoints and used to quantify the incremental
effect of text-based ICL over zero-shot prompting, thereby
revealing both strengths and current limitations of MM-LLMs
in real-world clinical tasks.

Overall, OpenAI-o3 demonstrated superior performance,
followed by ChatGPT-4o and Gemini 2.5 Pro, with
MedGemma-27B showing the most limited capabilities. The
results revealed a progressive decline in model performance as
diagnostic complexity increased—from anatomical recognition
to higher-order diagnostic synthesis. While models showed
meaningful strength in visual recognition and descriptive
reporting, performance in challenging differential diagnosis
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remained modest, suggesting that current MM-LLMs function
best as assistive rather than autonomous diagnostic tools at
present.

Image Interpretation and Lesion Classification Tasks
The free-text interpretation task assessed 4 domains of
increasing complexity—anatomic site, findings, lesion
reasoning, and final diagnosis—simulating real-world diagnostic
synthesis that integrates visual recognition with clinical
reasoning. Task satisfaction declined with increasing
complexity, from anatomic localization (~85%) to definitive
diagnosis (~45%). OpenAI-o3 and ChatGPT-4o consistently
outperformed Gemini 2.5 Pro and MedGemma-27B, though
with distinct profiles: OpenAI-o3 produced concise, accurate
descriptions with coherent diagnostic impressions and high
specificity for normal anatomy, while ChatGPT-4o showed
greater sensitivity for inflammatory and vascular findings. In
contrast, Gemini 2.5 Pro often overcalled minor irregularities
but performed better on prostate lesions, likely reflecting
prostate-predominant pretraining. These discrepancies indicate
that MM-LLM behavior depends not only on recognition
accuracy but also on underlying reasoning logic, diagnostic
thresholds, and domain-specific pretraining.

Regarding clinical decision endpoints, the goal of cystoscopy
is to identify abnormal lesions—particularly malignancies—so
that biopsies are performed when necessary while avoiding
unnecessary procedures that increase cost and risk. Thus, lesion
detection, biopsy indication, and malignancy presence were
defined as key clinical endpoints. OpenAI-o3 achieved the most
balanced performance across sensitivity, specificity, and Youden
J, outperforming ChatGPT-4o and Gemini 2.5 Pro, especially
in specificity, by accurately distinguishing normal from
malignant cases—supporting appropriate biopsy
decision-making. These findings highlight the importance of
calibrating operating points to clinical priorities and suggest
that MM-LLMs, particularly OpenAI-o3, can aid cystoscopic
decision-making when optimized for an appropriate
specificity-sensitivity balance.

The 7-class lesion classification task evaluated each model’s
ability to distinguish visually and pathologically similar
tumor-like lesions. Models performed best on prevalent
malignant lesions (pUC) but struggled with benign mimickers
(polyps and papilloma) and rare entities (non-U Ca), often
misclassified as pUC—reflecting limited pretraining exposure
to uncommon classes. As shown in Table 5, 14 of 17 non-U Ca
cases (82.4%) were predicted as pUC, a much more prevalent
bladder tumor. One plausible explanation is that LLMs exhibit
a tendency to choose majority or high-frequency labels in
multiple-choice settings. When pretraining class distributions
are imbalanced, the token sequences corresponding to common
options (eg, “pUC”) can carry higher previous probabilities,
biasing the model toward these answers irrespective of
correctness. This phenomenon is often described as
majority-label bias or common-token bias [26].

On the other hand, the frequent misclassification of papilloma
as pUC highlights the inherent challenge of distinguishing these
entities based solely on cystoscopic appearance—a difficulty
shared by human experts. Rather than indicating model failure,

these confusion patterns reflect the substantial macroscopic
overlap between papilloma and low-grade pUC. While visual
distinction remains experimental, our study addressed this
clinical reality by grouping both entities under the “Biopsy
Indicated” category in the binary endpoint analysis. In that
context, the models successfully flagged these lesions for
histologic confirmation, aligning with standard safety protocols
despite the specific classification ambiguity. CIS, a flat,
high-grade, non-invasive UC subtype, was handled well by
OpenAI-o3, achieving strong results (accuracy 86.7, sensitivity
52.9, specificity 92.7, and Youden J 0.46) despite diagnostic
difficulty. Overall, OpenAI-o3 showed the most balanced
performance, particularly excelling in benign and NOTA
classifications, achieving higher specificity than ChatGPT-4o
and Gemini 2.5 Pro.

Performance Disparity and the Role of the
Open-Weight Baseline
Although MedGemma-27B is a medical-specific model, its
performance trailed behind the general-purpose proprietary
models (OpenAI-o3, ChatGPT-4o, and Gemini 2.5 Pro). This
gap can be attributed to 2 primary factors: domain-specific data
misalignment and model scale. First, contrary to the expectation
that a medical model should inherently outperform general
models, MedGemma’s training distribution did not encompass
the specific modality of cystoscopy. While its multimodal
components (SigLIP encoder) were rigorously pretrained on
diverse medical datasets—including chest X-rays, dermatology
images, ophthalmology images, and histopathology
slides—endoscopic imagery was notably absent from its
pretraining corpus. Consequently, the model faced a “zero-shot”
challenge in a domain it had not explicitly learned, whereas the
massive general-purpose models likely benefited from broader
exposure to endoscopic images present in their web-scale
training data.

Second, as a local and open-weight baseline, MedGemma-27B
(≈27B parameters) operates with significantly constrained
capacity compared to the proprietary SOTA architectures. It
lacks the extensive parameter count, training budget, and
chain-of-thought optimization that allow models such as
OpenAI-o3 to generalize across unseen tasks. Therefore, our
intent is not to claim parity with these massive systems, but to
establish a transparent performance floor for open-weight
deployment. Despite the lower accuracy in this zero-shot setting,
MedGemma-27B remains a critical benchmark for institutions
requiring on-premise, privacy-preserving solutions. Its
performance represents the current starting point for future
adaptation, such as LoRA fine-tuning or retrieval-augmented
prompting, rather than a direct competitor in raw reasoning
capability.

Comparing With Previous Studies
Guo et al. [17] reported comparable findings when evaluating
ChatGPT-4V (OpenAI) and Claude-3.5 (Anthropic) on 603
cystoscopic images, achieving accuracies of 82.8% and 79.8%
but with marked variability across conditions. Both models
performed well for cystitis and bladder tumors but poorly for
BPH and normal structures, indicating that general-purpose
LLMs detect major lesions with high sensitivity but struggle
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with subtle findings. Similar variability has been observed in
gastrointestinal endoscopy, where ChatGPT-4V showed mixed
accuracy across lesion types and underperformed relative to
tuned CNN models [27]. Recent work suggests that general
multimodal models such as Gemini 2.5 Pro may even surpass
specialized AI in certain “edge cases” [28]. Unlike task-specific
systems, these models can simultaneously classify images and
generate descriptive reasoning and management suggestions,
offering value for clinical interpretation and education.

Enhancing MM-LLM Performance in Medical-Specific
Domain
Several in-domain strategies can improve general-purpose
MM-LLMs without training from scratch, including ICL,
contrastive pretraining, and retrieval augmentation.

In our study, text-only ICL with brief cystoscopic tumor
descriptions had minimal impact, except for OpenAI-o3.
Specificity rose slightly, and sensitivity improved for rare benign
lesions, but this was offset by reduced sensitivity for malignant
classes (pUC and CIS)—a trade-off in which stricter thresholds
reduce false positives and unnecessary biopsies, but risk missed
cancers. These findings indicate that text-only ICL confers
minimal benefit for image-dominant tasks. Notably, OpenAI-o3
showed a modest gain in micro-average accuracy (0.41-0.46),
driven mainly by NOTA, likely reflecting its reasoning-oriented
architecture and more flexible use of ICL as contextual support.

A likely reason for the limited effect is insufficient visual
grounding: text-only cues do not anchor the model’s attention
to class-defining morphology. In fine-grained visual
discrimination (eg, cystoscopic lesion typing), semantic hints
(eg, “papillary fronds” and “flat erythematous base”) may not
map reliably to visual features unless those associations were
learned during pretraining; without image exemplars, the
model’s visual reasoning remains underconstrained.

Beyond text-only prompts, few-shot image-text exemplars
(multimodal ICL) can strengthen grounding and improve
accuracy. Presenting paired lesion images with diagnoses
exposes prototypical visual features and tightens the link
between morphology and class semantics. Across histopathology
imaging, image-text ICL has enabled ChatGPT-4V to approach
or surpass task-specific classifiers with only 5-10 examples per
class, markedly narrowing the gap between zero-shot and fully
supervised models [29].

In parallel, contrastive-learned encoders (eg, MedCLIP) [30]
and multimodal retrieval augmentation [31] can enrich
representations and factual grounding, mitigating data scarcity
and hallucination. In summary, improving MM-LLM image
classification in medical domains is multifaceted, and combining
hybrid ICL (image + text), contrastive pretraining, and retrieval
augmentation offers a practical path to greater accuracy,
robustness, and interpretability in cystoscopic diagnosis.

Clinical Implications
MM-LLMs offer greater flexibility than task-specific endoscopy
AI by combining visual recognition with contextual reasoning
and narrative explanation. They can interpret
morphology-diverse findings and integrate relevant clinical text,

supporting a more context-aware understanding. Our results
suggest potential applications in education and workflow
support, including serving as virtual tutors for trainees and
automating report generation to reduce workload and standardize
documentation. However, their moderate diagnostic accuracy,
particularly for rare or subtle lesions, limits their current use as
autonomous diagnostic tools. Future efforts should focus on
vision-conditioned ICL, multimodal retrieval-augmented
training, and video-based modeling to enhance interpretive
stability and diagnostic confidence [30,31]. Integration with
patient-level data, cystoscopy-specific benchmark datasets, and
human-in-the-loop oversight will be critical to ensure clinical
safety and responsible implementation.

Limitations
This study has several methodological strengths, including an
unbiased and rigorous evaluation framework. The dual-task
design enabled simultaneous assessment of reasoning
transparency, adaptability, and accuracy—helping distinguish
superficial pattern recognition from genuine clinical
understanding. However, several limitations should be
acknowledged. First, our ICL implementation was text-based
only: models received brief written descriptions of tumor
features without any paired visual exemplars. As a result, this
study evaluated “text-based ICL” rather than full multimodal
ICL, and the absence of a few-shot image or image-text
examples likely constrained the models’multimodal capabilities.
The modest gains observed with ICL in our experiments may
therefore underestimate the potential benefit of visual or hybrid
(image + text) ICL. Future work should directly compare
text-based, visual, and hybrid ICL strategies and explore
complementary approaches such as contrastive-learned encoders
and multimodal retrieval augmentation for cystoscopic
diagnosis. Second, because the raw test images were drawn
from heterogeneous sources, residual confounding from
source-related differences and image-quality artifacts cannot
be fully excluded. Although we applied a strict 3-layer quality
control pipeline—image exclusion criteria, standardized
preprocessing, and human verification of diagnostic utility—to
mitigate these effects, some bias related to image source
heterogeneity may remain. In addition, our evaluation relied on
static images; incorporating temporal cues from cystoscopy
videos may improve recognition of subtle or evolving lesions
and reduce misclassification. Third, our dataset has an enriched
abnormality prevalence (80.3%), substantially higher than that
of typical clinical populations (20%-30%). Consequently, the
reported positive predictive value and negative predictive value
are inflated and not generalizable; they should be interpreted
as dataset-specific rather than as estimates for real-world
screening or hematuria-clinic settings.

Conclusions
Using a clinically challenging, stress-test image set and a
rigorous blinded evaluation framework, this study
comprehensively assessed MM-LLMs for cystoscopic
interpretation and lesion classification. Among the evaluated
models, OpenAI-o3 demonstrated the most balanced and
clinically coherent performance, followed by ChatGPT-4o and
Gemini 2.5 Pro. These findings highlight the meaningful
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assistive potential of MM-LLMs in generating interpretable
free-text rationales, supporting biopsy triage, and facilitating
training. However, their performance in truly difficult

differential diagnoses remains modest and requires further
optimization before safe clinical integration.
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