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Abstract

Background: Stroke is a complex, multidimensional disorder influenced by interacting inflammatory, immune, coagulation,
endothelial, and metabolic pathways. Single-omics approaches seldom capture this complexity, whereas multiomics techniques
provide complementary insights but generate high-dimensional and correlated feature spaces. Machine learning (ML) offers
strategies to manage these challenges; however, the predictive accuracy and reproducibility of multiomics-based ML models for
stroke remain poorly characterized.

Objective: This review aimed to conduct a systematic evaluation of ML models using multiomics data for stroke risk stratification
and comprehensive patterns in discriminatory performance, integration strategies, and validation and reporting practices to inform
future methodological development.

Methods: We conducted a comprehensive literature search following PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) 2020 recommendations. Studies published from January 2000 to July 2025 were identified across
9 databases, including PubMed, MEDLINE Ultimate, EMBASE, CINAHL, Web of Science, Scopus, Cochrane CENTRAL,
ACM Digital Library, and IEEE Xplore. Eligible studies included adults with ischemic, hemorrhagic, or unspecified stroke as
the prediction target; applied at least 2 omics layers; and reported ML performance metrics. Risk of bias was assessed using the
Prediction Model Risk of Bias Assessment Tool, while reporting quality was evaluated using Minimum Information for Medical
AI Reporting. The primary outcome was the area under the receiver operating characteristic curve.

Results: A total of 7 studies (n=40,274) published between 2022 and 2025 fulfilled the inclusion criteria. All studies combined
2 omics layers, most often using middle-level integration with dyads such as metabolomics-proteomics and
metabolomics-lipidomics. Supervised ML algorithms across studies included support vector machines, tree-based ensembles,
generalized linear models, and deep learning architectures. Three studies reported external validation of the integrated multiomics
model, while 1 study conducted only an external assessment of a single marker rather than validation of the integrated model.
Three studies reported an assessment of calibration, and clinically prespecified operating points were rarely described. Reported
areas under the receiver operating characteristic curve varied by prediction task, ranging from 0.75 to 0.96 for acute diagnosis
models and from 0.75 to 0.97 for onset risk prediction models; the highest externally validated performance was achieved by a
support vector machine trained on a metabolomics-proteomics dyad in mixed stroke types (ischemic and hemorrhagic).

Conclusions: Multiomics ML models showed high apparent discrimination for stroke risk stratification, but current evidence
remains methodologically limited. Small sample sizes, heterogeneous designs, and incomplete reporting currently hinder the
reproducibility and generalizability of multiomics ML models for stroke risk prediction. To advance the field, future studies
should adopt leakage-resistant evaluation frameworks, conduct site-specific external validations, and benchmark against both
single-omics and clinical baselines to demonstrate incremental value. Well-designed, transparently reported investigations will
be essential to move multiomics ML models from exploratory promise toward clinically actionable tools in precision stroke care.
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Introduction

Stroke is defined by acute neurological deficits resulting from
vascular brain injury [1,2]. Globally, this condition is responsible
for about 6.6 million deaths annually, making it the second
leading cause of mortality. Its contribution to disability-adjusted
life years is anticipated to rise considerably by 2050 [3]. As
stroke is associated with long-term functional impairment,
cognitive decline, and a high risk of recurrence, early risk
stratification remains critical [3-6]. Multiple layers of interacting
risk factors shape the occurrence and progression of stroke [7].
The prediction of stroke occurrence and clinical course is
influenced by a number of factors at the molecular level,
including genetic predisposition, epigenetic alterations, chronic
inflammatory responses, and metabolic abnormalities [8-13].
Although this multilayered pathophysiology helps explain
heterogeneity in etiological classification, its complexity makes
it difficult to capture fully using only clinical variables or a
single biomarker [13-17].

Recently, multiomics approaches have been used to characterize
cross-layer relationships—genetic, epigenetic, transcriptomic,
proteomic, metabolomic, and lipidomic—within integrated
analytic frameworks [13,15,18,19]. This reflects the inherently
multilayered biology of stroke, in which inflammatory, immune,
coagulation, and metabolic axes operate concurrently [17,20].
Prior evidence indicates that multiomics strategies may
outperform single-omics approaches in clinical applications,
including stroke subtype classification, risk prediction, and
acute diagnosis [19,21]. Simultaneously, machine learning (ML)
has proven particularly effective for analyzing multiomics data,
which are marked by high dimensionality and nonlinearity
[22,23]. ML enables the flexible integration of clinical variables
with omics layers, supports reproducible analytic pipelines, and
strengthens the performance and generalizability of prediction
models [23,24]. Accordingly, there is increasing interest in
developing precision ML models that leverage multidimensional
biological data.

Although studies applying multiomics and ML to stroke have
increased rapidly, substantial heterogeneity is evident across
investigations in terms of the types of omics incorporated,
integration strategies, prediction end points, predictor variables,
evaluation metrics, disease spectra, validation methods, and
sample sizes [25,26]. This variability limits cross-model
comparability and complicates assessments of clinical
applicability [27]. Nevertheless, comprehensive comparative
and quantitative evaluations of the relative effectiveness of these
approaches for stroke prediction remain scarce, and no
systematic review synthesizing this evidence has been published
to date.

This study aimed to perform a systematic analysis of ML-based
investigations using multiomics data for stroke risk stratification
and identify comprehensive performance patterns across the
included studies to inform future methodological development.

Methods

Study Design
This review was conducted and reported in line with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 recommendations (Multimedia
Appendix 1) [28]. Prior to conducting the review, the study
protocol was prospectively registered in the PROSPERO
(International Prospective Register of Systematic Reviews;
registration number CRD420251089823).

Data Sources and Search Strategy
A systematic search was conducted in PubMed, MEDLINE
Ultimate (EBSCOhost), EMBASE, CINAHL, Web of Science,
Scopus, Cochrane CENTRAL, ACM Digital Library, and IEEE
Xplore for records published between January 1, 2000, and July
31, 2025. The start date was chosen a priori to capture early
applications of omics-based prediction and to avoid arbitrarily
excluding potentially relevant studies at the interface of omics
and ML. Because multiomics and ML terms are inconsistently
indexed across databases, we deliberately adopted a highly
sensitive search strategy using multiple overlapping biomedical
and multidisciplinary databases. Search strategies combined
controlled vocabulary and free-text terms related to stroke,
omics, and ML. Controlled vocabularies included Medical
Subject Headings, Emtree, and CINAHL Headings;
database-specific syntax and Boolean operators were adapted
to each platform. Full search details for all databases are
available in Multimedia Appendix 2. Gray literature—major
preprint servers, including medRxiv, bioRxiv, and Google
Scholar—were searched to check for any potentially missed or
in-press studies; however, no additional records meeting the
inclusion criteria were identified (final search date: July 31,
2025).

Inclusion and Exclusion Criteria
Study eligibility was determined through the PICO (participants,
interventions, comparisons, and outcomes) framework and is
summarized in Table 1. Studies were included if they (1)
enrolled adults (aged ≥18 years) with stroke or at risk of stroke
(ischemic, hemorrhagic, or unspecified), (2) used multiomics
data to develop ML models, and (3) reported model performance
for at least 1 stroke-related prediction outcome. In this review,
stroke-related outcomes included incident stroke risk, acute
stroke diagnosis among patients with suspected stroke, and
etiological subtype classification. In addition, we adopted a
pragmatic, prediction-oriented definition of ML. Eligible models
included supervised algorithms that used multiomics data as
input to predict the prespecified outcomes. Studies were
excluded if they targeted combined conditions rather than stroke
alone, did not aim to predict stroke, substituted nonomics data
for molecular omics, applied only omics or only ML without
integration, or evaluated treatment effects. Conventional
regression analyses conducted exclusively for explanatory or
associative purposes without a specified predictive task were
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excluded, as they were not considered ML. The publication
period (January 1, 2000, to July 31, 2025) was chosen to capture
the evolution of multiomics- and ML-based stroke risk

prediction from its early emergence to the most recent
developments.

Table 1. Eligibility criteria for the systematic review using the PICO (participant, intervention, comparison, and outcomes) framework.

Exclusion criteriaInclusion criteriaItem

Studies enrolling adults (aged ≥18 years) with
stroke or at risk of stroke (ischemic, hemorrhagic,
or unspecified)

Participants • Studies involving children or adolescents (aged <18 years)
• Studies restricted to demographic-only strata (eg, only men)
• Studies focusing on combined conditions (eg, stroke with dementia or

atrial fibrillation) rather than stroke alone

Studies using multiomics data (genomics, transcrip-
tomics, proteomics, metabolomics, etc) to develop

MLa models for stroke prediction

Intervention • Studies that do not aim to predict stroke
• Studies applying only omics or only ML, without integration of both
• Studies evaluating treatment effects (eg, drugs, procedures, or interven-

tions)
• Studies using nonomics data (eg, imaging data such as CTb, MRIc,

EEGd, or ultrasound) instead of molecular omics for stroke prediction

No restrictions based on comparisonComparison • No restrictions based on comparison

Studies reporting prediction performance of ML
models for stroke-related outcomes

Outcomes • Studies that do not report prediction performance

No restrictions based on languageLanguage • No restrictions based on language

Studies published from January 1, 2000, to July 31,
2025

Publication period • Studies published before January 1, 2000

Original research articles, including observational
studies, retrospective or prospective cohort studies,
secondary data analyses, or basic science studies

Study designs • Reviews, meta-analyses, protocols, editorials, or nonhuman studies
• Feasibility-only pilot studies without full model development or per-

formance reporting

Full published original articles in peer-reviewed
journals

Publication types • Abstract-only records, letters, withdrawn papers, or documents without
full text

aML: machine learning.
bCT: computed tomography.
cMRI: magnetic resonance imaging.
dEEG: electroencephalogram.

Study Selection, Data Extraction, and Synthesis
Records retrieved from all sources were imported into EndNote
21 (Clarivate Plc) for deduplication and screening management,
with tracking and extraction maintained in Microsoft Excel
2021 (Microsoft Corp). Titles and abstracts were independently
screened in duplicate by 2 reviewers (HYY and HS) based on
predefined eligibility criteria. Full texts of potentially eligible
reports and risk of bias were also assessed independently in
duplicate by 2 reviewers (HYY and HS). Disagreements between
reviewers were resolved through discussion and, when
necessary, adjudicated by a third reviewer (Y-JS). Data were
extracted independently by 2 authors (HYY and HS) using a
standardized piloted form and cross-verified by a third author
(Y-JS). Extracted items included study title, authors, publication
year, country, multiomics studied, sample size, data source,
omics type, stroke type, prediction task, omics analytic methods,
ML algorithms, outcome metrics and summary results, and
validation details (internal/external and strategy). Model
performance metrics were extracted and summarized
descriptively. The primary measure of discrimination was the

area under the receiver operating characteristic curve (AUC)
with 95% CIs.

When discrimination was reported using Harrell C statistic for
a binary outcome rather than a receiver operating characteristic
(ROC)–based AUC, we treated the C statistics as numerically
equivalent to the AUC for the purpose of pooling [29,30].
Publication bias is typically assessed when at least 10 studies
are available; because fewer studies met the inclusion criteria
in this review, publication bias was not formally evaluated, and
no funnel plots were generated [31].

A meta-analysis was not performed because the limited number
of eligible studies and the substantial between-study
heterogeneity precluded meaningful quantitative synthesis. The
included studies varied markedly in study design (retrospective
vs prospective), sample size, and data sources (single-center
cohorts, community-based datasets, and biobank data). In
addition, the prediction tasks differed considerably,
encompassing stroke onset risk prediction, acute diagnosis, and
subtype classification. Given this conceptual, methodological,
and statistical heterogeneity, quantitative pooling of effect
estimates was judged inappropriate. Instead, we conducted a
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structured narrative synthesis to systematically summarize study
characteristics, omics layers evaluated, ML approaches applied,
and clinical prediction targets.

Quality and Risk of Bias Assessment
Quality appraisal and risk of bias assessment were conducted
using 2 frameworks suited to prediction modeling and medical
artificial intelligence (AI) reporting: the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [32], and the Minimum
Information for Medical AI Reporting (MINIMAR) [33].
PROBAST was used for the primary risk of bias classification,
and was applied across the participants, predictors, outcomes,
and analysis domains, with judgments at both the domain and
overall levels categorized as low risk, high risk, or unclear [32].
MINIMAR was adopted as the checklist for AI and ML studies,
as it represents an expert-developed framework suited to
evaluating reporting quality in omics-based ML research,
particularly in early translational health care contexts [33,34].
Each item was coded Y (adequate), P (partial), N (not reported),
or X (not applicable), and compliance (%) was calculated as
the proportion of Y among applicable items.

Ethical Considerations
The institutional review board of Chung-Ang University
(number 1041078-20250715-HR-225) approved the study
protocol.

Results

Literature Search Results
The database search across 9 sources yielded 2960 records. Of
these, 881 duplicates were excluded, leaving 2079 records to
be screened. During title and abstract screening, 1413 records
were excluded. Full texts were obtained for 666 reports, of
which 530 were excluded as off-topic following full-text
assessment.

The remaining 136 studies underwent full eligibility evaluation.
Of these, 129 were excluded for the following reasons:
insufficient sample size (<30; n=5), not a stroke prediction study
(n=25), not multiomics (n=70), outcome outside scope (n=6),
full text unavailable (n=1), and failure to meet inclusion criteria
on full-text review (n=22). A total of 7 studies were identified
as meeting the inclusion criteria and were subsequently analyzed
in this review (Figure 1) [35-41]. Gray literature searches
yielded no additional records; therefore, the PRISMA flow
diagram reflects only the results from database searches.
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Figure 1. PRISMA flow diagram of study selection for systematic review of multiomics-based machine learning models for stroke prediction.

Quality Assessment of the Included Studies
Study appraisals are summarized in Multimedia Appendix 3.
On PROBAST, 4 studies were rated as low risk of bias
[36,37,40,41], 2 studies as high risk [38,39], and 1 study as
unclear overall [35]. Most concerns were concentrated in the
analysis domain, whereas participants, predictors, and outcomes
were generally judged to be at low risk. Applicability issues
were minimal across the included studies. On MINIMAR,
overall reporting compliance ranged from 11 of 21 items [35]
to 17 of 21 items [41], with a median value of 14 of 21.
Information on demographic characteristics (race, ethnicity,
and socioeconomic status), intended users, data missingness,
external validation, and data transparency was often
insufficiently reported or entirely absent.

Characteristics of the Included Studies
A total of 7 studies published between 2022 [38] and 2025
[36,41] were included in this review (Table 2). The studies
represented 3 countries: China (n=4) [36-38,40], Spain (n=1)
[39], and the United Kingdom (n=1; from England, Scotland,
and Wales) [41]. Studies that used public repositories were
classified as multinational [35,36]. Data sources were grouped
into 3 categories: clinical cohorts recruited from hospitals or
community health service centers (n=4) [37-40], public datasets
(n=2) [35,41], and mixed sources (n=1) [36]. In the
mixed-sources study [36], models were developed using gene
expression omnibus datasets [42] and externally validated in
independently recruited local clinical cohorts. Study designs
were predominantly prospective (n=4) [37-39,41], with
retrospective (n=2) [35,36], and mixed retrospective-prospective
(n=1) [40]. Sample sizes varied widely, ranging from 30
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participants in a hospital cohort [39] to 38,060 participants in
a large public dataset [41].

Reported ML approaches included random forest, support vector
machine (SVM), gradient boosting (extreme gradient boosting;
adaptive boosting), generalized linear and logistic models,
Bayesian logistic regression, the least absolute shrinkage and
selection operator (LASSO), including the LASSO-penalized
Cox proportional hazards model, and deep learning architectures
such as the biological multilayer graph neural network. All

studies integrated 2 omics layers, and the most frequent dyads
were lipidomics-metabolomics (n=2) [37,38].

Regarding stroke type, 6 studies [35-39,41] specifically
investigated ischemic stroke, whereas 1 study [40] included all
stroke types. Prediction targets were grouped into categories:
onset risk prediction (n=3) [35,40,41], acute diagnosis (n=2)
[37,38], subtype classification (n=1) [39], and both reporting
of diagnosis and subtype classification (n=1) [36].

Table 2. Characteristics of the included studies (N=7) of multiomics-based machine learning models for stroke prediction. The table summarizes key
design features of each included study. Sample size (n) refers to the development cohort size for each study.

Prediction taskOmics typesMachine learning
algorithms

Sample
size, n

Study de-
sign

Data sourceCountryStudy (year)

TargetStroke type

Onset risk pre-
diction

Ischemic
stroke

Genomics and
transcriptomics

RFc, SVMd,

XGBe, and GLMf

103Retrospec-
tive

IEUa and GEOb

database

Multina-
tional

Liu et al [35]
(2024)

Acute diagno-
sis; subtype
classification

Ischemic
stroke

Transcriptomics
and proteomics

RF and LASSOg1785Retrospec-
tive

GEO database,
2022-2023 single
hospital

Multina-
tional and
China

Chen et al [36]
(2025)

Acute diagno-
sis

Ischemic
stroke

Lipidomics and
metabolomics

RF and BLRi90Prospective2017-2019 CCPTPhChinaZhao et al [37]
(2023)

Acute diagno-
sis

Ischemic
stroke

Lipidomics and
metabolomics

RF, SVM, and

LRj
106ProspectiveSingle hospitalChinaYe et al [38]

(2022)

Subtype classi-
fication

Ischemic
stroke

Transcriptomics
and epige-
nomics

BioMGNNk and
XGB

30Prospective2015-2016 single
hospital

SpainLabarga et al [39]
(2024)

Onset risk pre-
diction

StrokeMetabolomics
and proteomics

XGB, SVM,

GNBl, RF, Ad-

aBoostm, and L1-
regularized LR

100Prospective
and retro-
spective

2010-2011 communi-
ty health service
centers, 2021-2023
single hospital

ChinaZeng et al [40]
(2024)

Onset risk pre-
diction

Ischemic
stroke

Proteomics and
genomics

LASSO-Coxo38,060ProspectiveUKBnEngland,
Scotland,
and Wales

Gan et al [41]
(2025)

aIEU: integrative epidemiology unit.
bGEO: gene expression omnibus.
cRF: random forest.
dSVM: support vector machine.
eXGB: extreme gradient boosting.
fGLM: generalized linear model.
gLASSO: least absolute shrinkage and selection operator regression.
hCCPTP: community comprehensive prevention and treatment project.
iBLR: binary logistic regression.
jLR: logistic regression.
kBioMGNN: biological multilayer graph neural network.
lGNB: Gaussian naïve bayes.
mAdaBoost: adaptive boosting.
nUKB: UK biobank.
oLASSO-Cox: least absolute shrinkage and selection operator-penalized Cox proportional hazards model.

Omics Features and Integration Strategies in
Multiomics Stroke Modeling
Table 3 summarizes the characteristics of omics data, their
analytic roles, and the integration strategies applied in each

study. Omics type lists all molecular layers included per study,
and biospecimen records the biological source of each layer as
reported. The analysis unit indicates the level of the final
features entered into the model.
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Table 3. Omics features and integration strategies for multiomics stroke modeling in the included studies (n=7).

Integration
strategy

Feature selection
method

Role in
pipeline

Top-ranked feature biomarkersAnalysis unitBiospecimenStudy (year) and omics
data type

Middle integra-
tion

Liu et al [35] (2024)

LDf clumping with
genome-wide signif-
icance and F-stat

FSc, FPd,

RSe

FURIN (OMIM 136950),
TOMM40 (OMIM 608061),
HDDC3 (NCBI Gene 374659),
ALDH2 (OMIM 100650),
MAN2A2 (OMIM 600988)

SNPb to gene-
level

GWASa summa-
ry data

Genomics

DEAGsiFS, FP,

VALh
FURIN, TOMM40, HDDC3,
ALDH2, MAN2A2

Gene-level ex-
pression

Whole-blood

mRNAg
Transcriptomics

Late integrationChen et al [36] (2025)

DEMsk, MLl selec-
tion

FS, FPhsa-miR-3646, hsa-miR-4669,
hsa-miR-4721, hsa-miR-504-
3p, hsa-miR-8085, hsa-miR-

miRNA ex-
pression,
gene-level

Serum miRNAj,
whole-blood
mRNA

Transcriptomics

3064-5p, hsa-miR-6736-5p,mRNA expres-
sion hsa-miR-6835-5p, hsa-miR-

6793-5p

Cross-omics prioriti-
zation, targeted vali-
dation

FS, VALITGAMmProtein levelPlasma proteinProteomics

Middle integra-
tion

Zhao et al [37] (2023)

PLS-DAq, ML selec-
tion

FS, FP, VALPEo (18:0p/18:2), PE

(16:0e/20:4), OAHFAp (36:3),

LC-MSn untar-
geted metabo-
lite features

SerumLipidomics

PE (16:0p/20:3), PE
(18:1p/18:2)

PLS-DA, ML selec-
tion

FS, FP, VAL4-hydroxyphenylpyruvic acid,
cafestol

LC-MS untar-
geted lipid
species

SerumMetabolomics

Middle integra-
tion

Ye et al [38] (2022)

OPLS-DAy, receiver
operating characteris-
tic-based evaluation

FS, FPPE (22:6/P-18:0), Cerr 34:2,

GlcCers (d18:0/18:0), DGt

44:0, LysoPCu (16:0), 22:6-

LC-MS untar-
geted metabo-
lite features

SerumLipidomics

OHv/LysoPC, TAGw 58:7-FAx

22:4

OPLS-DA, receiver
operating characteris-
tic-based evaluation

FS, FPTaurine, oleoylcarnitine, creati-
nine

LC-MS untar-
geted lipid
species, target-
ed lipid
species

SerumMetabolomics

Middle integra-
tion

Labarga et al [39] (2024)

GraphSAGEaa-based
embedding, attention
weight

FS, FP, VALNot reported (high-dimensional
omics features; candidate
biomarkers mentioned but no
explicit ranking provided)

Gene-level ex-
pression, miR-
NA expres-
sion, circRNA
expression

Whole-blood
mRNA, miR-

NA, circRNAz

Transcriptomics

Probe-level quality
control, Graph-

FS, FP, VALNot reported (high-dimensional
omics features; candidate

CpGab β-val-
ues

Whole-blood
DNA methyla-
tion

Epigenomics

SAGE-based embed-
ding, attention
weight

biomarkers mentioned but no
explicit ranking provided)

Early integra-
tion

Zeng et al [40] ( 2024)
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Integration
strategy

Feature selection
method

Role in
pipeline

Top-ranked feature biomarkersAnalysis unitBiospecimenStudy (year) and omics
data type

OPLS-DA, ML se-
lection

FS, FP, VALCaprolactamLC-MS untar-
geted metabo-
lite features

PlasmaMetabolomics

DEPsag, ML selec-
tion, cross-model in-
tersection

FS, FP, VALC4BPAad, COL15A1ae, HBBafDIAac protein
groups

PlasmaProteomics

Late integrationGan et al [41] (2025)

LASSO-Coxam, 17-
protein score derived

FS, FP, RS,
VAL

17-protein score (GDF15ah,

PLAURai, NT-proBNPaj, IGF-

BP4ak, BCANal +12 proteins)

Antibody-
based pro-
teomics ana-
lytes

PlasmaProteomics
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Integration
strategy

Feature selection
method

Role in
pipeline

Top-ranked feature biomarkersAnalysis unitBiospecimenStudy (year) and omics
data type

Precomputed PRSFP, RS,
VAL

Not reportedPRSanWhole-blood
DNA genotypes

Genomics

aGWAS: genome-wide association study.
bSNP: single nucleotide polymorphism.
cFS: feature selection.
dFP: final predictors.
eRS: risk score.
fLD: linkage disequilibrium.
gmRNA: messenger RNA.
hVAL: validation.
iDEAGs: differentially expressed associated genes.
jmiRNA: microRNA, microRNA of human origin.
kDEMs: differentially expressed miRNAs.
lML: machine learning.
mITGAM: integrin subunit alpha M.
nLC-MS: liquid chromatography-mass spectrometry.
oPE: phosphatidylethanolamine.
pOAHFA: (O-acyl)-1-hydroxy fatty acid.
qPLS-DA: partial least squares-discriminant analysis.
rCer: ceramide.
sGlcCer: glucosylceramide.
tDG: diacylglycerol.
uLysoPC: lysophosphatidylcholine.
vOH: hydroxyl group.
wTAG: triacylglycerol.
xFA: fatty acid.
yOPLS-DA: orthogonal partial least squares-discriminant analysis.
zcircRNA: circular RNA.
aaGraphSAGE: graph sample and aggregate.
abCpG: cytosine phosphate guanine.
acDIA: data-independent acquisition.
adC4BPA: complement component 4 binding protein alpha.
aeCOL15A1: collagen type XV alpha 1 chain.
afHBB: hemoglobin subunit beta.
agDEPs: differentially expressed proteins.
ahGDF15: growth differentiation factor 15.
aiPLAUR: plasminogen activator, urokinase receptor.
ajNT-proBNP: N-terminal pro b-type natriuretic peptide.
akIGFBP4: insulin-like growth factor binding protein 4.
alBCAN: brevican.
amLASSO-Cox: least absolute shrinkage and selection operator-penalized Cox proportional hazards model.
anPRS: polygenic risk score.

Top-ranked feature biomarkers represent the features or panels
identified by authors as having the highest contributions. Role
in pipeline indicates how each biomarker was used and is coded
as feature selection, final predictors, validation, or risk score.
Multiple codes may apply when roles differ across study phases.
The feature selection method summarizes the dominant selector
applied before model fitting. Integration method classifies how
multiomics layers were combined, following established
taxonomies [43,44]: early integration (simple concatenation of
preprocessed omics into a single matrix for a downstream

learner), middle integration (a joint latent representation learned
directly across omics followed by modeling), and late integration
(separate omics-specific models or scores combined at the
decision or score level).

Across the 7 included studies, multiomics inputs comprised
transcriptomics (n=3) [35,36,39], proteomics (n=3) [36,40,41],
metabolomics (n=3) [37,38,40], lipidomics (n=2) [37,38],
epigenomics (n=1) [39], and genomics (n=2) [35,41] (Table 3).
Biospecimens were predominantly blood derived—whole blood
for messenger RNA, circular RNA expression, and
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DNA-methylation; serum or whole blood for micro RNA
(miRNA) profiling; and serum or plasma for protein panels and
liquid chromatography–mass spectrometry (LC-MS)–based
metabolite and lipid features. Genomic data were sourced from
genome-wide association study summary statistics in 1 study
[35] and from whole blood DNA genotypes in another [41].

Most studies (n=6) reported top-ranked biomarkers or panels.
By contrast, 1 study [39] used deep learning–based
representation learning to process high-dimensional
transcriptomic and epigenomic inputs directly as raw features,
subsequently deriving multiomics embeddings from the full
feature space. Consequently, no ranked lists of biomarkers were
generated in this study. Regarding analytic roles, omics variables
were consistently used for feature selection and as final
predictors. A dedicated validation step—internal and/or
external—was described in 5 studies [36-40], while a risk score
stage was incorporated in 2 studies [35,41].

Given the heterogeneity of feature selection approaches, Table
3 provides a concise method label for each study. Regarding
integration strategies, most studies used middle-level integration
(n=4) [35,37-39], while late-level integration was reported in
2 studies [36,41] and early-level integration in 1 study [40].
Middle integration was implemented in three main forms: (1)
cross-omics filtering, in which genome-wide association study
signals were intersected with transcriptomic differentially
expressed genes to define the feature set for ML; (2)
projection-based selection, where lipidomic and metabolomic
data were reduced to compact multiomics panels; and (3)
graph-based joint embeddings. Late integration was used in two
distinct ways: (1) validation-stage fusion, in which

transcriptomic discoveries were linked with an independent
proteomic readout to confirm cross-omics consistency; and (2)
score-level fusion, where a protein risk score and a polygenic
risk score were jointly incorporated into prediction models.

A study [40] used a mixed stroke end point combining ischemic
and hemorrhagic stroke. Because this outcome definition merges
etiologically distinct conditions, the identified features are
interpreted as mixed-population signals rather than
subtype-specific molecular biomarkers. Methodologically, the
study performed early integration by analysis-specific quality
control and univariate screening, followed by concatenation of
the retained features into a single matrix for common selection
(LASSO) and modeling (eg, SVM).

Model Performance of Risk Prediction for Stroke
Predictive performance is summarized in Table 4.
Discrimination was characterized primarily using AUC with
95% CIs; when available, sensitivity, specificity, validation
method, and calibration details were also extracted. The
representative performance shown for each study does not
necessarily correspond to the numerically highest AUC. Primary
estimates were selected to align with the objectives of this
review. Multiomics integration and the use of clinically
comparable control groups were prioritized as key criteria, and
external validation results were adopted whenever available. If
external validation was not reported, the best internally validated
AUC was recorded. For Gan et al [41], the proteomics plus
polygenic risk score specification was designated as the primary
estimate because it most reflected multiomics integration,
consistent with the inclusion criteria of this review. Further
details are provided in the footnotes of Table 4.
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Table 4. Predictive performance of multiomics-based machine learning models for stroke in adult population (N=7). For the primary model selected
from each study, the table summarizes omics final predictors, validation approach, and key performance metrics. When external validation was reported,
“n” indicates the sample size of the external validation cohort, reported separately from the development cohort.

Machine learning model performanceCalibrationExternal vali-
dation

Cross-valida-
tion

Final predictors,
n

Study (year)

SpecificitySensitivityAUCa (95% CI)Model

Not reportedNot reported1.000 (1.000-1.000)GLMcYesbYes (n=12)Not reported5Liu et al [35]
(2024)

0.8570.5670.750 (0.601-0.899)LAS-

SO+RFe
Not reportedPartial

(n=44)
10-fold1dChen et al

[36] (2025)

0.7330.8970.837g (0.732-0.942)RF+LRfYesNo7-fold7Zhao et al
[37] (2023)

0.917Not reported0.963 (0.884-1.000)SVMhNot reportedNoNot reported10Ye et al [38]
(2022)

Not reported0.9500.950 (not reported)BioMGNNiNot reportedNo5-foldHigh-dimension-
al omics fea-
tures

Labarga et al
[39] (2024)

1.0000.8640.973 (0.921-0.999)SVMYesYes (n=44)10-fold4Zeng et al
[40] (2024)

Not reportedNot reported0.748l (0.707-0.789)LASSO-

Coxk
Not reportedYes

(n=4970)
10-fold2jGan et al

[41] (2025)

aAUC: area under the receiver operating characteristic curve.
bCalibration was reported in the Methods, but no plot or statistic was presented.
cGLM: generalized linear model.
dExternal AUC from integrin alpha M (ITGAM) measured in an independent clinical cohort.
eLASSO+RF: least absolute shrinkage and selection operator regression–based feature selection by random forest as the final classifier.
fRF+LR: random forest feature selection followed by logistic regression as the final classifier.
gValue shown is hypertensive ischemic stroke versus healthy controls.
hSVM: support vector machine.
iBioMGNN: biological multilayer graph neural network.
jScore-level fusion of proteomic and genetic risk scores.
kLASSO-Cox: least absolute shrinkage and selection operator-penalized Cox proportional hazards model.
lHarrell C statistic for a boundary outcome, treated as numerically equivalent to AUC for quantitative synthesis. The estimate corresponds to protein
risk score + polygenic risk score (PRS) to reflect multiomics integration.

Final predictors in Table 4 refer to the predictors actually entered
into the final model (eg, selected feature panel, single markers,
or score-level inputs), excluding clinical covariates. Across
studies, most models relied on compact omics-derived inputs,
while 1 study [39] analyzed high-dimensional feature sets. For
late-level integration, the final predictors correspond to the
score-level [41] or marker-level [36] inputs entered into the
model, rather than the underlying omics features used to
construct them. Ten-fold cross-validation was the most
commonly applied procedure (n=3) [36,40,41], while 7-fold
[37] and 5-fold [39] schemes were also reported. Several studies
[35,38] did not specify the resampling method. The algorithms
most frequently applied were SVM and random forest, often
coupled with LASSO for feature selection. Additional
approaches included generalized linear models, the
LASSO-penalized Cox proportional hazards model, and deep
learning architectures such as a biological multilayer graph
neural network.

A total of 3 studies [35,40,41] reported external validation of
the integrated multiomics model, whereas Chen et al [36]

reported an external assessment limited to a single biomarker,
integrin alpha M. Three studies [35,37,40] reported calibration
assessment. Although Liu et al [35] stated that calibration curves
were generated, no plot or statistic was presented. Among
externally validated models—excluding 1 boundary estimate
(AUC=1.00) [35]—AUC values ranged from 0.75 [41] to 0.97
[40], both of which were onset risk prediction models. The only
acute diagnosis model with external validation was Chen et al
[36] (AUC=0.75); however, the external validation was
conducted as a cross-omics single-marker assessment—integrin
alpha M measured at the proteomic level—rather than validation
of an integrated multiomics model. When all reported AUCs
were stratified by clinical task regardless of validation type,
acute diagnosis models reported AUCs ranging from 0.75 [36]
to 0.96 [38], whereas onset risk prediction models reported
AUCs ranging from 0.75 [41] to 0.97 [40]. Notably, the SVM
model in Zeng et al [40] achieved the highest externally
validated discrimination (AUC=0.97) using a
metabolomics-proteomics combination. However, because this
estimate was derived from a mixed stroke end point, it does not
reflect performance for a specific stroke subtype. Where
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reported, sensitivity and specificity at the chosen decision
thresholds are summarized in Table 4. A total of 5 studies
[36-40] reported sensitivity and/or specificity, and only 3 studies
[36,37,40] reported both metrics at prespecified decision
thresholds. Because reporting was incomplete and thresholds
and reporting formats were heterogeneous across studies,
attempts at separate quantitative synthesis of sensitivity or
specificity were not conducted. Reporting of model performance
and validation procedures varies across studies, which limited
comparability and may have contributed to optimistic estimates.
Only 1 study [41] evaluated model performance against standard
clinical predictors. In Gan et al [41], the multiomics model had
a C statistic of 0.765 in internal validation and 0.748 in external
validation, whereas the clinical predictor model showed
corresponding values of 0.753 and 0.754, respectively.

Discussion

Overview
This systematic review synthesized 7 studies of
multiomics-based ML models for stroke-related prediction tasks.
To our knowledge, it is one of the first reviews to focus
specifically on multiomics ML in the context of stroke risk
stratification. Although many of the included models reported
apparently high discrimination, these findings arise from small,
heterogeneous, and methodologically limited evidence base
characterized by high-dimensional omics inputs, limited external
validation, and inconsistent reporting. Accordingly, the primary
contribution of this review is not to demonstrate that current
multiomics models are ready for clinically meaningful or
generalizable accuracy, but rather to show that the current
evidence base is methodologically limited, prone to performance
inflation, and in need of substantially more rigorous and
transparent evaluation.

Discrimination and Methodological Quality in
Multiomics-Based Machine Learning Stroke Prediction
On face value, most included multiomics ML models reported
high apparent discrimination, particularly when compact
biomarker panels were constructed from biologically coherent
omics dyads. However, these apparently strong AUCs must be
interpreted with extreme caution. Across studies,
small-to-moderate sample sizes, high-dimensional inputs, and
optimistic validation strategies created ideal conditions for
severe overfitting and data leakage. Within this constrained
context, some technical patterns were still observable. For
example, a metabolomics-proteomics SVM reported an
externally validated AUC of 0.97 with a boundary CI (95% CI
0.92-1.00) [40]. This finding is often interpreted as evidence
that compact and mechanically coherent biomarker panels can
match or exceed more complex multilayered approaches [45].
At the algorithmic level, the prominence of SVM in the
best-performing models is also broadly consistent with previous
meta-analytic work in cardiovascular ML, in which SVM
achieved slightly higher pooled AUCs for stroke outcomes than
boosting algorithms or convolutional neural networks [46]. In
the specific metabolomics-proteomics SVM model in this
review, the combination of a modest sample size and almost

upper-limit confidence bound suggests that residual overfitting
and optimism remain likely, even with external testing.

A deep learning model applied to transcriptomic-epigenomic
matrix also reported an AUC approaching 0.95 [39]; however,
this estimate was generated in a cohort of only 30 participants
in a pronounced “p≫n” biomarker-discovery setting. This high
AUC is therefore best viewed as a methodological artifact rather
than a valid predictive performance. Without leakage-robust
pipelines and adequately powered external validation, this result
should be considered exploratory and should not be used to
claim strong discrimination. In this context, the combination of
high-capacity architecture, high-dimensional feature space, and
limited effective sample size makes severe overfitting and
information leakage not merely possible but statistically
expected. In addition, the study did not report specificity at
prespecified decision thresholds, which makes it difficult to
relate the reported sensitivity to false-positive rates and limits
the clinical interpretability of the findings [47]. The generalized
linear model–based study reported an AUC of 1.00 [35]. Given
the small sample size and high-dimensional feature space, this
boundary estimate is more appropriately interpreted as an
optimistic methodological artifact rather than valid or
generalizable predictive performance [48,49]. In addition,
calibration was described but not shown; the absence of explicit
plots or statistics limits contextual interpretation of the apparent
perfect separation. Taken together, these findings reinforce that
near-ceiling discrimination estimates in this review are not
reliable indicators of clinical validity. Overall, the reported
performance should be viewed as preliminary and potentially
optimistic given the methodological constraints of the included
studies.

Observed Performance Patterns by Integration
Strategy and Omics Layers
The performance of multiomics ML models appears to be
influenced by both the integration strategy and the specific
omics layers used. Within this small and heterogeneous set of
studies, most applied middle-level integration, which offered a
pragmatic balance for limited sample sizes and heterogeneous
data platforms by generating joint feature representations prior
to classification [50,51]. Early-level integration, while more
vulnerable to dimensionality challenges, produced strong results
when combined with stringent feature selection and relatively
careful validation [52], as demonstrated in one of the
higher-performing studies in this review. By contrast, late-level
integration, implemented either as score-level fusion or
cross-omics validation, reported more modest AUC values
(0.75) [36,41]. Notably, Gan et al [41] used score-level fusion
by combining a proteomic risk score with a polygenic risk score,
rather than feature-level integration. This formulation may be
less able to capture complex interomics relations [44,53].
Accordingly, several methodological studies have suggested
that late-level integration may underperform because it cannot
fully capture synergistic cross-layer interactions [51,52]. In this
review, however, these differences cannot be attributed to
integration strategy alone, because the late-integration studies
also differed in prediction task, sample size, and model
specification. Thus, the apparent underperformance of late-level
integration in this review should be regarded as a
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hypothesis-generating observation rather than a general
conclusion about the inherent limitation of late-integration
approaches.

Beyond integration strategies, the selection of omics layers
fundamentally shaped predictive utility. Consistent with prior
research, transcriptomic-epigenomic pairs were generally used
to represent relatively stable regulatory states, whereas
lipidomic-metabolomic dyads were used to capture pathway
dynamics and acute physiological responses [54-56]. Genomic
data mostly contributed a predispositional context rather than
serving as direct predictive variables. Additionally, the definition
of the analysis unit—for example, gene-level expression, CpG
probe values, or LC-MS features—determined the imputation
burden, multiplicity, and scope of feasible feature selection
methods, thereby influencing both model performance and
reproducibility [55,57,58]. Collectively, these observations
underscore that methodological design choices in omics
integration and feature representation are not simply technical
decisions but pivotal determinants of translational potential.

Cross-Study Heterogeneity and Barriers to
Quantitative Synthesis
Across the included studies, differences in reported performance
primarily reflected variations in study design and analytic
choices rather than random fluctuation. Substantial heterogeneity
was observed across study populations, prediction targets, stroke
end points, and analytic units. In this context, the evidence was
synthesized narratively rather than summarized as a single
pooled effect size.

More specifically, formal pooling of AUCs was not undertaken
because it would have required combining performance
estimates derived from substantially different data structures
and outcome definitions. With respect to the omics inputs, some
studies modeled gene- or protein-level summaries, whereas
others analyzed large sets of individual probes or untargeted
LC-MS features, leading to marked differences in dimensionality
and in the feature-selection and validation strategies that were
feasible. At the outcome level, 1 study modeled composite
“all-stroke” end points that combined ischemic and hemorrhagic
events, whereas others focused exclusively on ischemic stroke.
Because these subtypes have distinct pathophysiology and omics
profiles, mixed end points limit subtype-specific interpretation
and contribute to heterogeneity across studies. Consequently,
similar AUC values may reflect different biological mechanisms,
case mixes, and follow-up structures, and a single pooled
estimate would provide limited additional clinical or
methodological insight. Overall, this pattern of heterogeneity
is consistent with an early, exploratory phase of multiomics ML
research in stroke and highlights the need for more standardized
designs and reporting.

Comparable patterns of methodological divergence have been
described in broader reviews of ML-based prediction models,
in which variation in datasets, predictors, analytic pipelines,
and algorithms has constrained the interpretability of pooled
accuracy estimates [46,59-61]. Our findings are consistent with
this broader literature: the included studies are sufficiently
mature for qualitative comparison but not yet harmonized to
support robust quantitative synthesis.

Implications for Practice and Future Research
For time-critical decisions in hyperacute stroke care, integrating
current multiomics workflows into the minute-to-hour decision
windows that govern acute management remains challenging.
In particular, most acute diagnosis studies in this review relied
on omics profiling that generally depends on centralized
laboratory workflows (eg, LC-MS–based
proteomic/metabolomic assays). Given current turnaround times,
these approaches are unlikely to be clinically translatable within
hyperacute treatment windows, limiting near-term clinical
feasibility [62]. From a broader risk-stratification perspective,
however, multiomics ML approaches may be better suited to
longer time horizons, including identification of individuals at
elevated future stroke risk, refinement of etiologic classification
after the acute phase, and delineation of biologically
homogeneous patient subgroups that are not apparent from
clinical variables or imaging alone [63,64]. Any future role in
acute pathways would require both stronger predictive evidence
and assay platforms with substantially shorter turnaround times
and lower costs.

Within this context, the current evidence does not yet provide
a sufficiently robust foundation for routine implementation of
multiomics-based ML models for stroke risk stratification. These
models are more accurately regarded as exploratory prototypes,
demonstrating potential capabilities within an optimized
analytical framework. Compact, blood-derived biomarker panels
constructed from biologically coherent omics dyads may offer
a plausible route for future clinical application, provided that
their performance can be reliably replicated and calibrated in
adequately powered, prospectively designed studies using
appropriate analytic platforms [65,66].

From a methodological perspective, the studies reviewed
highlight critical domains requiring standardization.
Repository-based cohorts provide statistical power and facilitate
discovery, but they may obscure preanalytical variability and
heterogeneity in investigator judgment [67,68]. By contrast,
locally recruited cohorts enable clinically focused hypotheses
but often suffer from limited sample sizes [69]. Furthermore,
the choice of analytic unit—whether gene, CpG probe, protein,
or LC-MS feature level—emerged as a critical determinant of
which feature selection and integration techniques were feasible,
thereby exerting a direct influence on predictive performance.
Collectively, these observations underscore the imperative for
harmonized analytic frameworks and transparent reporting
standards to strengthen reproducibility and enable meaningful
cross-study comparability.

Prospective, multisite validation of compact and biologically
coherent panels across diverse populations should be a priority.
Such studies must incorporate leakage-robust validation
pipelines, systematically report calibration and decision-curve
analyses, clinically relevant operating points (including
sensitivity and specificity at prespecified thresholds), and
benchmark performance against both single-omics models and
established clinical baselines to quantify true incremental value
[70,71]. In future work, both primary studies and evidence
syntheses should avoid pooling ischemic and hemorrhagic stroke
into undifferentiated “all-stroke” end points when quantifying
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model performance, given their distinct pathophysiological and
multiomics profiles. These observations collectively support
subtype-specific development and synthesis as a more
appropriate strategy for future multiomics ML research in stroke.
Expanding prediction targets to encompass hemorrhagic stroke,
postevent prognostic outcomes, stroke recurrence in secondary
prediction context, and health-economic evaluations will also
be essential to define the broader clinical utility of multiomics
ML approaches. With rigorous methodological safeguards and
robust external validation, these models hold the potential to
transition from exploratory promise to clinically actionable tools
in precision cerebrovascular medicine.

Limitations
This review has several limitations. First, although we initially
planned to conduct a meta-analysis, we ultimately judged that
conducting a meta-analysis would be inappropriate because the
included studies differed markedly in sample size, data sources,
validation strategies, and outcome definitions (eg, stroke onset
risk prediction, acute diagnosis, and subtype classification);
these discrepancies collectively precluded meaningful
quantitative synthesis and robust pooled effect estimates.
Second, external validation was conducted in only half of the
studies, while calibration and clinically relevant operating points
were reported in only a minority, limiting confidence in both
reproducibility and clinical applicability. Third, most cohorts
focused on ischemic stroke and blood-based assays, with only
limited data for hemorrhagic or mixed all-stroke populations
and alternative biospecimens, restricting generalizability and
likely contributing further to clinical and biological
heterogeneity. Fourth, reporting gaps—particularly concerning
missing-data mechanisms, demographic characteristics, and
preanalytical procedures—were frequent and constrained
assessment of bias and transportability. Fifth, differences in
prediction objectives and performance metrics complicated the
cross-study interpretation. Furthermore, the selection of a single
representative model in each study, while designed to ensure
consistency, introduced subjectivity and may have
underestimated the comprehensive range of model performance
reported in individual studies. Regarding literature retrieval,

the IEEE Xplore search relied on broad umbrella terms rather
than a comprehensive set of omics layer–specific keywords,
which may have reduced sensitivity for some technical records.
Sixth, although we excluded studies with a sample size under
30, the included analyses involved small cohorts relative to the
dimensionality of the omics data, making them highly
susceptible to overfitting and inflated performance even when
cross-validation was reported. Finally, methodological
variability across biospecimens, analytic levels, and
computational platforms further limited comparability across
studies. Collectively, these limitations—including the small
number of eligible studies, limited external validation,
incomplete reporting, and methodological
heterogeneity—underscore the need for standardized study
designs, rigorous external validation, and transparent reporting
practices to advance the field toward reproducible and clinically
meaningful applications.

Conclusion
This systematic review shows that multiomics-based ML models
for stroke-related prediction tasks frequently reported high
apparent discrimination, but almost exclusively in small,
heterogeneous, and high-dimensional studies with limited
external validation and incomplete reporting. Current
performance estimates are therefore likely optimistic and are
not sufficient to justify routine clinical use or to demonstrate
superiority over single-omics or purely clinical models. Even
the highest externally validated result should be viewed as a
promising proof of concept rather than evidence of robust and
clinically generalizable performance. Looking ahead, multiomics
integration remains a plausible basis for more precise stroke
risk stratification, but only if future models are developed and
evaluated in adequately powered, prospectively planned, and
transparently reported studies. Such work will require
leakage-resistant validation frameworks, clear calibration and
clinically relevant operating points, and systematic
benchmarking against simpler alternatives. Under these
conditions, multiomics-based ML models may progress from
exploratory prototypes to robust tools that support earlier
diagnosis and more tailored intervention in stroke care.
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