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Abstract

Background: High-quality clinical chains-of-thought (CoTs) are essential for explainable medical artificial intelligence (AI);
yet, their development is limited by data scarcity. Large language models can generate medical CoTs, but their clinical reliability
is unclear.

Objective: We evaluated the clinical reliability of large language model–generated CoTs in reproductive medicine and examined
prompting strategies to improve their quality.

Methods: In a blinded comparative study at a clinical center, senior clinicians in assisted reproductive technology evaluated
CoTs generated via 3 distinct strategies: zero-shot, random few-shot (using random shallow examples), and selective few-shot
(using diverse, high-quality examples). Expert ratings were then compared with evaluations from a state-of-the-art AI model
(GPT-4o).

Results: The selective few-shot strategy significantly outperformed other strategies across logical clarity, use of key information,
and clinical accuracy (P<.001). Critically, the random few-shot strategy offered no significant improvement over the zero-shot
baseline, demonstrating that low-quality examples are as ineffective as no examples. The success of the selective strategy is
attributed to 2 preliminary frameworks: “gold-standard depth” and “representative diversity.” Notably, the AI evaluator failed to
discern these critical performance differences. Thus, clinical reliability depends on strategic prompt design rather than simply
adding examples.

Conclusions: We propose a “dual principles” preliminary framework for generating trustworthy CoTs at scale in assisted
reproductive technology. This work is a preliminary step toward addressing the data bottleneck in reproductive medicine. It also
underscores the essential role of human expertise in evaluating generated clinical data.

(J Med Internet Res 2026;28:e85206) doi: 10.2196/85206
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Introduction

Background
Assisted reproductive technology (ART) represents a
cornerstone of modern medicine, offering solutions for millions
facing infertility [1]. The clinical decision-making process in
ART is exceptionally complex, requiring the synthesis of
high-dimensional patient data, including baseline characteristics
and medical history. This process is time-consuming and fraught
with risk for both clinicians and patients, as minute variations
in treatment protocols can lead to significant adverse outcomes.
Furthermore, clinicians must navigate patients’ personal values
and ethical considerations, demanding a highly personalized
and explainable approach to care [2].

Recent advancements in artificial intelligence (AI), particularly
large language models (LLMs), have demonstrated considerable
promise for answering medical questions, addressing clinical
case challenges, and augmenting clinical diagnosis [3-7]. Within
clinical decision support systems, these technologies can help
synthesize large amounts of data, facilitating more
comprehensive and standardized therapeutic strategies.
However, while general-purpose LLMs like ChatGPT-4 and
Gemini are powerful, their training on broad, nonspecialized
data limits their utility in niche medical domains. Consequently,
high-performing clinical AI applications are typically fine-tuned
from general models using curated, domain-specific datasets
[8-10]. The actual bottleneck, however, is not a lack of raw
clinical data, but a profound lack of explainable data—data that
record not just what decision was made, but why. This
meticulous, expert-level reasoning, often captured as a
chain-of-thought (CoT), is the very fuel required to train AI
models that are not just accurate, but also trustworthy and
scalable to clinicians. To move beyond “black-box” predictions,
models require structured reasoning pathways, or CoT data,

which simulate clinical logic and enhance explainability [11,12].
The challenge, therefore, narrows down to a scarcity of
expert-authored CoT data within the specific area. The manual
creation of such a dataset on a large scale is prohibitively
expensive and time-consuming, presenting a significant barrier
to progress in explainable medical AI.

To address this challenge, a promising direction is to leverage
the generative capabilities of LLMs to synthesize clinical CoT
data at scale. While this offers a scalable solution to the data
bottleneck, it hinges on a critical, unverified assumption: the
clinical reliability of the generated content. In a high-stakes
domain like ART, this assumption cannot be taken for granted.

Therefore, this study is designed to examine this uncertainty
under the ART setting through a rigorous, head-to-head
empirical comparison. Figure 1 presents the conceptual
framework of our comparative evaluation study. We hypothesize
that a selective few-shot strategy, meticulously crafted with
diverse and deeply reasoned examples, will improve the factual
accuracy, logical clarity, and clinical information use of
LLM-generated reasoning in infertility decision-making
scenarios, compared with generic zero-shot and random few-shot
prompting. To test this, we developed a novel prompting
framework and validated it through a blinded evaluation protocol
where senior clinicians from the reproductive department
assessed the quality of CoTs from all 3 strategies. In a secondary
analysis, we further contrast these expert assessments against
the state-of-the-art (SOTA) AI evaluator (GPT-4o) at that time
to critically examine the current capabilities and limitations of
automated evaluation paradigms, which are widely used in
supervised data generation. Ultimately, this work aims to
establish an exploratory, practical, evidence-based methodology
for the trustworthy generation of clinical reasoning of ART at
scale.
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Figure 1. Conceptual framework of the comparative evaluation study. EHR: electronic health record; LCC: logical coherence and clarity; LLM: large
language model; PCAR: plausibility and clinical accuracy of reasoning; UCKI: use and coverage of key information.

The study workflow begins with a standardized patient case
(N=200) as the input. Three distinct prompting strategies are
evaluated in parallel pipelines: (1) zero-shot, which uses
instructions only; (2) random few-shot, which uses 5 randomly
selected examples; and (3) selective few-shot, which uses a
curated set of 6 diverse examples representing all major ART
categories in the cases. Each strategy, powered by the same
LLM engine, generates a unique CoT. All 3 generated CoTs
are then subjected to a rigorous, blinded “Doctor-in-the-Loop”
evaluation by 2 parallel assessors: human clinical experts (the
gold standard) and the SOTA AI evaluator (GPT-4o). This dual
evaluation process yields the final reliability scores and rankings
for each strategy.

LLMs in Health Care
Since the launch of ChatGPT-4, LLMs have rapidly spread into
many industries, such as education, finance, and health care.
For instance, Google’s Med-PaLM 2, a leading specialized
health care model, achieved 86.5% accuracy on the MedQA
benchmark, a popular multiple-choice open domain question
answering (OpenQA) medical problems dataset. Furthermore,
its responses were preferred over those of generalist physicians
in 65% of expert evaluations [13]. The LLMs are now used in
many healthcare–related workflows, ranging from medical
documentation assistance to clinical differential diagnosis
[5,14-16]. However, to effectively address highly specialized
tasks, these models are typically fine-tuned from pretrained
LLMs using carefully curated datasets. Despite their impressive
capabilities, current LLMs usually function as black boxes,
producing outputs without offering interpretable reasoning. In

clinical practice, however, physicians often require not just
answers but also transparent explanations. This requires models
beyond black-box behavior and provides interpretable,
step-by-step reasoning processes. The increasing reliance on
LLMs has also intensified the demand for high-quality data
[17]. Alarmingly, some predict that the global supply of novel
text data may be exhausted by 2050 and image data by 2060
[18]. In the health care domain, the situation is even more
critical: clinical data are not only scarce but also highly sensitive
and expensive to obtain. As a result, a central challenge
emerges—how can we build datasets that are both sufficiently
large and clinically trustworthy to support transparent, reliable
medical AI systems?

Synthetic Data in Health Care
To overcome the data shortage in health care, researchers are
increasingly turning to LLMs to create synthetic data. This
approach is promising for several reasons. It allows for data
generation at scale, addressing issues of data scarcity and
privacy [19,20]. Furthermore, synthetic data can be tailored to
balance underrepresented patient groups, potentially improving
model robustness and fairness [21]. Generative models have
demonstrated remarkable success in these areas, with some
studies showing that LLM-generated narratives can be
indistinguishable from those written by physicians [22]. This
potential, however, is inextricably linked to a profound
challenge: reliability. While LLMs can mimic the style of
clinical text, ensuring the factual accuracy and clinical
plausibility of the content is a far more difficult task. For
instance, models have been used to generate both structured
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electronic health records (EHRs) and unstructured clinical notes
[23], but in both cases, the risk of hallucination—where the
model generates incorrect or nonsensical information—poses
a significant threat in high-stakes medical applications.
Therefore, the core challenge moves beyond mere data
generation to a more fundamental question of trust. While
studies have shown that synthetic data can be effective for
certain human labeling and fine-tuning tasks [24-28], these
applications often involve relatively straightforward data points.
The problem is magnified when the task requires complex,
multistep medical reasoning. In such scenarios, “synthetic” must
not equate to “inaccurate.” This underscores the urgent need
for rigorous evaluation methods, not just for the data points
themselves, but for the underlying reasoning processes that
produce clinical decisions. Our work focuses on this critical
next step: assessing the reliability of synthetically generated
reasoning paths.

Chain-of-Thought
CoT is a prompt engineering technique that enhances the output
of LLMs, particularly for complex tasks involving multistep
reasoning. It facilitates problem-solving by guiding the model
through a step-by-step reasoning process by using a coherent
series of logical steps [29]. This approach has been shown to
significantly elevate performance on a wide range of complex
reasoning tasks in general domains, especially for arithmetic
problems and logical reasoning tasks [30,31]. To enhance the
reasoning ability in domain-specific tasks, researchers have
started fine-tuning the models with CoTs [12]. Within the
medical domain, the potential of CoT is particularly compelling.
Its step-by-step nature aligns naturally with the differential
diagnosis and clinical reasoning processes used by physicians.
Consequently, researchers have begun to apply CoT prompting
to improve accuracy on medical question-answering benchmarks
and in practice diagnosis [11,32]. More importantly, CoT offers
a crucial pathway toward explainable AI in medicine. By
externalizing the model’s reasoning processes, CoT allows
clinicians to scrutinize, understand, and ultimately trust the AI’s
recommendations, which is a prerequisite for its safe integration
into clinical workflows.

The application of CoT is rapidly evolving. Beyond simple
prompting, a new frontier in clinical AI is the (1) fine-tuning
of models on datasets enriched with CoT data to build inherently
more explainable systems, which, however, immediately
confronts the fundamental bottleneck of medical AI; and the
(2) prohibitive cost and time required for expert clinicians to
manually author thousands of high-quality reasoning paths for
a training set. An intuitive and scalable solution is to leverage
foundational LLMs to synthetically generate these CoTs,
creating a cost-effective pathway to train the next generation
of trustworthy medical models. However, this entire paradigm
hinges on a critical, yet largely unexamined, question: (3) Is the
reliability of synthetically generated CoTs adequate to support
their application in complex clinical scenarios? Literature to
date offers little guidance. Most research focuses on the extrinsic
value of CoT (ie, improving final answer accuracy), with scant
attention paid to the intrinsic reliability of the reasoning itself.

A model fine-tuned on flawed, albeit synthetically generated,
logic could learn to produce seemingly correct answers for the
wrong reasons—a risk that is unacceptable in clinical practice.
Furthermore, standardized, expert-driven protocols for assessing
the clinical validity, coherence, and faithfulness of
machine-generated reasoning are conspicuously absent. Our
study is designed to directly fill this foundational gap. Before
the field can confidently use synthetic CoT for model training
at scale, we must first have a rigorous method to measure its
reliability. Therefore, we propose and implement a blinded,
expert-led evaluation framework to answer the fundamental
question: how reliable is synthetically generated sophisticated
clinical reasoning, and what is the best prompting strategy to
elicit it from LLMs?

Methods

Data Source
From the manually reviewed dataset, we randomly selected 200
cases as our evaluation set, covering a variety of ART. These
ARTs are broadly categorized into 3 generations: in vitro
fertilization (IVF), intracytoplasmic sperm injection (ICSI), and
preimplantation genetic testing (PGT). Each generation includes
several clinical subtypes, such as short-protocol IVF and IVF
with donor sperm. Among the 200 evaluated cases, IVF accounts
for the largest proportion (140/200, 70%), including standard
IVF (116/200, 58%), IVF with donor sperm (9/200, 4.5%), and
short-protocol IVF (short-time insemination, 15/200, 7.5%).
The second most common is ICSI (38/200, 19%), comprising
standard ICSI (26/200, 13%), IVF+ICSI (5/200, 2.5%), and
TESA (testicular sperm aspiration)+ICSI (7/200, 3.5%). PGT
represents 11% (22/200) of the dataset, including
preimplantation genetic testing for aneuploidies (PGT-A; 6/200,
3%), preimplantation genetic testing for monogenic disorder
(PGT-M; 3/200, 1.5%), and PGT for structural rearrangements
(13/200, 6.5%).

As shown in Table 1, the dataset consisted of three main
components: (1) a structured set of baseline and demographic
variables, (2) the preliminary diagnosis and treatment plan, and
(3) an unstructured narrative description of the present illness
history. The structured baseline data served as the quantitative
and categorical foundation for clinical assessment, encompassing
key indicators of ovarian reserve such as anti-Müllerian hormone
and baseline follicle-stimulating hormone levels. The
unstructured narrative provided essential clinical context,
offering a detailed account of the patient’s medical journey,
which is critical for nuanced and context-aware medical
reasoning. The output data, labeled as preliminary diagnosis
and treatment plan, reflects the clinical conclusions and
therapeutic strategies formulated by human experts in prior
encounters. This component serves as the ground truth outcome.
The LLM’s task is to generate a reasoning path that logically
connects the patient’s input data to this expert-defined outcome.
A detailed breakdown of all case data variables, including
structured baseline indicators and narrative clinical history, is
provided in Multimedia Appendix 1. Together, these inputs
formed the foundation for CoT generation and model evaluation.
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Table 1. Structure and description of input and output variables for each casea.

VariableCategory

Baseline and demographics • Female age
• Menstrual cycle
• Body weight
• BMI
• Anti-Müllerian hormone level
• Duration of infertility
• Gynecological ultrasound findings
• Baseline follicle-stimulating hormone level

Present illness history • Present illness history

Preliminary diagnosis and treatment plan • Type of infertility
• Controlled ovarian stimulation protocol
• Initial gonadotropin dosage
• Preliminary differential diagnosis
• Initial assisted reproductive technology strategy

aThis table outlines the variables provided to the large language model for each case, categorized into input (baseline and demographic and present
illness history) and output (preliminary diagnosis and treatment plan). These variables form the basis for the chain-of-thought generation task.

Ethical Considerations
A set of EHRs recorded between 2020 and 2022 in the Infertility
Outpatient Department at West China Second University
Hospital was considered in this study. The study was approved
by the institutional review board of West China Second
University Hospital, Sichuan University (ID: 2022288). The
EHRs have been manually reviewed and corrected to ensure
data accuracy. All EHR data used in this study were fully
deidentified before being accessed by the research team. The
deidentification procedure followed HIPAA (Health Insurance
Portability and Accountability Act) Safe Harbor standards,
including the removal of all direct identifiers (eg, name, date
of birth, medical record number, contact information, and
provider information) and all quasi-identifiers (eg, dates,
locations, and institutional identifiers). Only aggregated clinical
descriptors necessary for the reasoning task (eg, high-level
patient history and laboratory summaries) were retained. Access
to the deidentified dataset was restricted to authorized study
personnel through institution-managed credentials and encrypted
storage. Reviewers performing the blinded evaluation accessed
only the deidentified clinical vignettes and model-generated
reasoning content through a secure, read-only interface; no
downloads or reidentification attempts were permitted. All
access was logged and monitored by an internal auditor to ensure
compliance with institutional clinical data governance policies.
Because the study used retrospective, fully deidentified EHRs,
the requirement for updated informed consent for the following
analysis was waived by the institutional review board in
accordance with national regulations. No participants were
contacted for this study, and no compensation was provided to
participants.

Experiment Design

Overview
To systematically evaluate the reliability of LLM-generated
CoT and to determine the impact of different prompting
strategies, we designed a comparative study. The experiment

was structured into 3 distinct arms, each representing a different
level of contextual information provided to the model. Our
design philosophy was to create a controlled, stepwise
comparison to isolate the effects of in-context examples and
the strategy used for their selection.

All 3 groups used the evaluation dataset (N=200) described in
the data source, making sure of a fair comparison. A capable
“Teacher Model” is key to generating better-quality data [33].
Considering the models’ performance so far, we used the
open-source model DeepSeek-R1-671b, which was known for
its outstanding reasoning capability, as our consistent model
shared by 3 arms [34]. Across all 3 arms, the LLM was assigned
the same core task: generating a detailed, step-by-step ART
CoT by integrating all provided patient information and the
corresponding expert-provided reference output. All the
inference was conducted via the application programming
interface call. The model was executed with temperature=0.5
and max tokens=5000. We used temperature=0.5 to reflect
typical clinical-LLM use, where deterministic decoding
(temperature=0) may produce rigid or incomplete clinical
reasoning. All prompting strategies were evaluated under
identical generation settings to ensure fair comparison.

Group 1: Zero-Shot Baseline
In this group, we aimed to establish a fundamental baseline to
evaluate the out-of-the-box clinical reasoning capabilities of
general-purpose LLMs when applied to this specialized task.
To this end, the model was prompted using a standardized
directive instruction, with each clinical case embedded directly
into the prompt (see Multimedia Appendix 2 for details). The
outputs generated by the model, along with corresponding
physician evaluations, served as a performance floor, quantifying
the baseline reliability and limitations of an unadapted LLM in
handling novel clinical scenarios.

Group 2: Random Few-Shot Prompting
This experimental arm was designed to establish a baseline for
a standard, nonoptimized few-shot approach. Its purpose was
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to measure the impact of providing generic, in-domain examples
without a specific selection strategy. For each of the 200 test
cases, the prompt was initially prepared with a fixed set of 5
examples to provide context for the model. These 5 examples
were randomly sampled from our expert-authored data pool,
excluding the existing evaluation dataset. The sample set used
in the prompt for every test case consisted of 4 standard IVF
cases and 1 short-protocol IVF case, accompanied by a concise
reasoning chain authored by domain experts. The prompt
structure and instructions were otherwise identical to those in
the other arms. A representative example of a few-shot sample,
detailing the input data and expert-written CoT, is provided in
Multimedia Appendix 2. This approach represents a “naive”
few-shot implementation. It is designed to test the hypothesis
that the mere presence of in-domain examples, even without
being specifically tailored to the test case, is sufficient to
improve reasoning quality compared to the zero-shot baseline.

Group 3: Selective Few-Shot Prompting
This arm represents our proposed method and was designed to
test the hypothesis that a deliberately curated set of diverse
examples would improve reasoning reliability and
generalization. Instead of random sampling, this approach used
a clinically informed, representative selection strategy.
Physicians curated a set of 6 exemplary cases from a pool of
records not included in the 200 evaluation set (to prevent data
leakage). These 6 examples were specifically chosen to represent
the full spectrum of major ART categories present in our dataset,
including IVF (standard IVF, short-protocol IVF, and IVF with
donor sperm), ICSI, TESA+ICSI, and PGT (PGT-A). Their
reasoning part was carefully crafted and covered all critical
steps. The complete prompt is provided in Multimedia Appendix
2. For every test case, this same curated set of 6 diverse
examples was prepended to the prompt. The purpose of this
strategy was to provide the model with comprehensive and
representative clinical guidance within the prompt itself.

In summary, this 3-arm design allows for a multifaceted analysis
of CoT reliability. The comparison between group 1 and group
2 will isolate the general benefit of using in-context examples.
The critical comparison between group 2 and group 3 will

determine whether our proposed selective prompting strategy
provides a statistically significant improvement over a random
baseline. Together, these comparisons will build a clear
evidence-based argument for the importance of a well-designed
prompting strategy in generating reliable and accurate clinical
reasoning.

Evaluation Metrics

Physician Evaluation
The evaluation was conducted by a panel of 2 board-certified
reproductive physicians. Both subject matter experts are faculty
members at the same academic medical center but work
independently in separate clinical teams. They were invited
through an internal clinical research collaboration mechanism,
and participation was voluntary. Their sole role was to perform
a blinded evaluation of the CoTs. Each evaluator possesses over
10 years of clinical experience in the field of ART. Prior to the
formal evaluation, a calibration session was held where all
evaluators scored 10 cases together. Any discrepancies were
discussed to ensure a consistent understanding of the criteria.
During the blinded evaluation, each physician reviewer received
only the clinical vignette and the model-generated reasoning
content. All identifying information, model names, and
prompting strategies were removed to ensure full masking. The
order of cases and strategies was independently randomized for
each reviewer to prevent any presentation bias. Each physician
independently scored the complete dataset without discussing
their ratings with other reviewers. No reviewer saw any
ground-truth labels or model metadata during the evaluation
process.

In this study, we created an evaluation metric involving 3
dimensions: logical coherence and clarity (LCC), use and
coverage of key information (UCKI), and plausibility and
clinical accuracy of reasoning (PCAR). All generated CoTs
were scored by the 5-point Likert scale (1=poor and 5=excellent)
across 3 key dimensions of reliability, as shown in Table 2 and
detailed in Multimedia Appendix 3. All paired comparison
results are tested using the Wilcoxon test and adjusted for false
discovery rate (FDR).

Table 2. Rubric for the evaluation of chain-of-thought (CoT) reliabilitya.

DefinitionMetric

Assesses whether the reasoning process is internally consistent, logically structured, and expressed
clearly and understandably.

Logical coherence and clarity

Evaluates the extent to which the reasoning incorporates and addresses relevant clinical data points
presented in the input.

Use and coverage of key information

Measures whether the reasoning is clinically sound, aligns with standard medical knowledge, and leads
to a reasonable interpretation or decision. Deduct points as appropriate across the 4 parts in the analysis.

Plausibility and clinical accuracy of reason-
ing

aThe table defines the 3 dimensions: logical coherence and clarity, use and coverage of key information, and plausibility and clinical accuracy of
reasoning, used by both human experts and the artificial intelligence evaluator to assess the quality of generated CoTs on a 5-point Likert scale.

AI Grader Evaluation
In addition to manual evaluation conducted by human experts,
we implemented a supplementary evaluation component
leveraging a widely used LLM verifier [35], GPT-4o, to explore

its feasibility as an automated evaluator of clinical reasoning.
This design enables a direct comparison between AI-generated
assessments and the human gold standard, thereby evaluating
the feasibility of using LLMs for quality control in large-scale
synthetic dataset generation. To ensure comparability, the
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evaluation criteria provided to the AI model were identical to
those outlined in Table 2, including definitions of logical
coherence, clinical appropriateness, and key information use.
The detailed prompt can be found in Multimedia Appendix 2.
Each instruction consists of 2 blocks: the evaluation rubric and
case vignette.

Statistical Analysis
All statistical analyses were conducted in Python (pandas, SciPy,
and statsmodels; Python Software Foundation). Each case
(N=200) was independently evaluated under 3 prompting
strategies (zero-shot, random few-shot, and selective few-shot)
across 3 dimensions: LCC, UCKI, and PCAR. Results are
reported as mean (SD), with exact n values indicated in tables.
To assess the reliability of the physician ratings, we evaluated
agreement using three complementary measures: (1) linear
weighted κ, (2) adjacent agreement rate (percentage of paired
scores within ±1 point), and (3) raw interrater disagreement
rates. Because the rating distributions exhibited strong ceiling
effects (scores concentrated around 4-5), linear weighted κ is
known to underestimate agreement under low variance
conditions, a well-described statistical paradox. Therefore, in
addition to reporting κ values for completeness, we emphasized
adjacent agreement and disagreement rates, which more
accurately capture clinical consensus when rating scales are
narrow. Across all 600 evaluations (200 cases×3 strategies),
disagreement rates were uniformly low, confirming strong
consistency between the 2 raters. The selective few-shot strategy
showed the lowest disagreement (LCC: 0.00, PCAR: 0.03,
UCKI: 0.02), followed by the zero-shot (LCC: 0.04, PCAR:
0.04, UCKI: 0.07) and random few-shot strategies (LCC: 0.12,
PCAR: 0.09, UCKI: 0.07). The highest disagreement observed
across all metrics was only 12%. Adjacent agreement was
correspondingly high, ranging from 88% to 100% depending
on the metric and strategy, indicating excellent practical
concordance despite the compressed scoring range. Given these
properties, interrater reliability was interpreted primarily through
adjacent agreement and disagreement rates, while κ statistics
were retained as a formal but secondary indicator.

Normality of paired differences was assessed using the
Shapiro-Wilk test and Q-Q plots. Because the evaluation scores
are 5-point Likert ratings, the paired differences take on only a

small number of discrete values (–2, –1, 0, +1, +2). As expected
with large samples and discrete Likert data, the Shapiro-Wilk
was extremely sensitive and returned significant results;
however, Q-Q plots showed no meaningful deviations from
approximate linearity beyond the expected discreteness.
Parametric tests are generally robust to moderate deviations
from normality in Likert-type data, especially with larger sample
sizes. We retained the nonparametric Wilcoxon paired tests as
primary analyses. All the statistical test details can be checked
in Multimedia Appendix 4.

To account for multiple pairwise comparisons across the
prompting conditions and evaluation metrics in the subgroups,
adjusted P values were calculated using the Benjamini-Hochberg
FDR correction across all 9 contrasts (3 comparisons per metric).
For each metric, paired comparisons were conducted using
Wilcoxon paired tests, and both the raw and FDR-adjusted P
values were reported. A post-hoc power analysis was performed.
For each evaluation metric, Cohen d effect sizes were computed
using the pooled SD of paired observations. This analysis was
conducted to assess the stability of estimates under small-sample
conditions.

Results

Overview
All the results were obtained through the evaluation dataset
(N=200), including several kinds of ART. As mentioned earlier,
3 metrics were used for evaluation: LCC, UCKI, and PCAR.
The evaluation was done by a panel of experienced practitioners.

General Performance
Table 3 presents the average scores of each prompting strategy
on LCC, UCKI, and PCAR. The selective few-shot strategy
outperformed both zero-shot and random few-shot approaches
across all 3 metrics. Specifically, it achieved mean scores of
4.56 (SD 0.50), 4.66 (SD 0.53), and 4.18 (SD 0.56), which were
significantly higher than those of the zero-shot strategy (mean
4.18, SD 0.56; mean 4.30, SD 0.63; mean 3.85, SD 0.53,
respectively; all P and adjusted P<.001; Cohen d=0.72, 0.61,
0.61) and the random few-shot strategy (mean 4.31, SD 0.64;
mean 4.42, SD 0.58; mean 3.91, SD 0.63, respectively; all P
and adjusted P<.001; Cohen d=0.45, 0.42, 0.46).

Table 3. The performance of the “zero-shot,” “random few-shot,” and “selective few-shot” strategies (N=200 cases per group)a.

PCARd, mean (SD)UCKIc, mean (SD)LCCb, mean (SD)Strategy

3.85 (0.53)4.30 (0.63)4.18 (0.56)Zero-shot

3.91 (0.63)4.42 (0.58)4.31 (0.64)Random few-shot

4.18 (0.56)4.66 (0.53)4.56 (0.50)Selective few-shot

aWilcoxon test used for paired comparisons; P values adjusted using the Benjamini-Hochberg false discovery rate procedure.
bLCC: logical coherence and clarity.
cUCKI: use and coverage of key information.
dPCAR: plausibility and clinical accuracy of reasoning.

Notably, there was no statistically significant difference between
the zero-shot and random few-shot groups on PCAR, though

samples did improve the model’s capability on LCC and UCKI
statistically significantly.
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Subgroup Analysis
To further dig into the reasons for selective few-shot’s winning,

we did an analysis grouped by ART. Table 4 presents the scores
of 3 ART generations.

Table 4. Subgroup analysis by assisted reproductive technology (ART) categorya.

PCARdUCKIcLCCbART and strategy

IVFe

3.88 (0.53)4.34 (0.61)4.20 (0.57)Zero

3.90 (0.65)4.44 (0.53)4.29 (0.67)Random

4.20 (0.55)4.69 (0.51)4.59 (0.49)Selective

ICSIf

3.87 (0.53)4.29 (0.65)4.16 (0.59)Zero

3.97 (0.59)4.45 (0.69)4.37 (0.54)Random

4.11 (0.56)4.53 (0.60)4.45 (0.50)Selective

PGTg

3.64 (0.49)4.05 (0.72)4.09 (0.43)Zero

3.86 (0.56)4.27 (0.70)4.32 (0.57)Random

4.18 (0.59)4.68 (0.48)4.59 (0.50)Selective

aSubgroup analyses were based on the respective case counts (IVF: n=140; ICSI: n=38; PGT: n=22). This table aims to further investigate the performance
differences of various prompting strategies across specific clinical scenarios. To achieve this, we categorized the 200 evaluation cases based on their
primary type of ART, including IVF, ICSI, and PGT, and conducted a comparative analysis of evaluation outcomes within each group. Wilcoxon test
used for paired comparisons; P values adjusted using the Benjamini-Hochberg false discovery rate procedure.
bLCC: logical coherence and clarity.
cUCKI: use and coverage of key information.
dPCAR: plausibility and clinical accuracy of reasoning.
eIVF: in vitro fertilization.
fICSI: intracytoplasmic sperm injection.
gPGT: preimplantation genetic testing.

In the largest subgroup, IVF (n=140), a key distinction emerged.
While the selective few-shot strategy significantly outperformed
both other groups across all metrics (P<.001 and adjusted
P<.001 for all comparisons, selective vs zero: Cohen d=0.72,
0.61, 0.59; selective vs random: Cohen d=0.51, 0.49, 0.50),
there was no statistically significant difference observed between
the random few-shot and zero-shot strategies (P=.19, .69, .10;
adjusted P=.22, .69, .13).

The analysis of the PGT subgroup (n=22) revealed the clearest
advantage for prompt diversity. The selective few-shot strategy,
which was the only prompt containing a PGT example,
outperformed the random few-shot strategy across all 3 metrics:
logical coherence (LCC: P=.03; adjusted P=.05; Cohen d=0.51),
information use (UCKI: P<.001; adjusted P=.01; Cohen d=0.55),
and clinical accuracy (PCAR: P=.03; adjusted P=.05; Cohen
d=0.68). Consistent with other findings, the random few-shot
strategy showed no significant improvement over the zero-shot
baseline in this category (LCC: P=.17; adjusted P=.19; Cohen
d=0.45; UCKI: P=.27; adjusted P=.27; Cohen d=0.32; PCAR:
P=.13; adjusted P=.17; Cohen d=0.43, respectively). However,
we must admit that the limited sample size makes the subgroup
analysis partially underpowered, and these comparisons should
be interpreted with caution.

A similar pattern emerged in the ICSI subgroup (n=38). The
selective few-shot strategy again demonstrated a measurable
advantage. It achieved statistically significant improvements
over the zero-shot baseline in 2 of the 3 key metrics: LCC
(P=.02; adjusted P=.15; Cohen d=0.53) and PCAR (P=.04;
adjusted P=.17; Cohen d=0.44). Although these comparisons
did not remain significant after FDR adjustment, the effect sizes
were moderate, and the directionality was consistent with the
overall findings. For UCKI, the selective strategy again achieved
the highest mean score, but this comparison did not reach
significance (P=.06; adjusted P=.17), suggesting a positive but
statistically inconclusive trend. The detailed subgroup statistical
results can be checked in Multimedia Appendix 4.

Case Study
As shown in Figure 2, to qualitatively illustrate the stark
differences in reasoning quality revealed by our quantitative
analysis, we selected a representative and complex case
involving PGT-M. This case is particularly illustrative, as it
requires a multilayered understanding of genetics, ART
procedures, and individualized patient factors. The main
mistakes are listed in Table 5.
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Figure 2. Representative PGT-M case illustrating qualitative differences in CoT reasoning across prompting strategies. This figure presents a representative
and complex case involving PGT-M, selected to qualitatively illustrate the differences in reasoning quality observed in our quantitative analyses. The
left panel shows the patient’s clinical information, the correct physician’s answer, and the color-coded annotation scheme (red: incorrect reasoning,
yellow: irrelevant reasoning, and green: correct reasoning). The right panel displays the CoT outputs generated under zero-shot, random few-shot, and
selective few-shot prompting strategies. Compared with the zero-shot and random few-shot generations, which omitted critical reasoning steps (eg, the
presence of infertility diagnosis, the indication for intracytoplasmic sperm injection, and comprehensive gonadotropin dose considerations), the selective
few-shot prompting was more closely aligned with clinical logic and included relevant patient-specific factors. CoT: chain-of-thought; PGT-M:
preimplantation genetic testing for monogenic disorder.

Table 5. Common reasoning errors in zero-shot and random few-shot chain-of-thought (CoT) outputs for a preimplantation genetic testing for monogenic
disorder case.

Flaws in zero-shot and random few-shotReasoning dimension

The model does not mention whether the patient has infertility issues.Diagnosis reasoning

CoT incorrectly assumes that if the male’s semen is normal, traditional IVFa can be used.Assisted reproduction decision

The reason for choosing the antagonist protocol in CoT was “greater safety and avoidance of OHSSb,” without
considering the patient’s specific circumstances (low AMH, first ovulation induction).

Ovarian stimulation protocol se-
lection

Only AMHc levels were considered, without taking into account weight, BMI, or PGTd goals (requiring more
embryos).

Initial gonadotropin dose

aIVF: in vitro fertilization.
bOHSS: ovarian hyperstimulation syndrome.
cAMH: anti-Müllerian hormone.
dPGT: preimplantation genetic testing.

In this PGT-M case, both partners are carriers of a pathogenic
variant in the KIAA0586 gene. During a previous pregnancy,
the fetus was found to have a homozygous mutation in
KIAA0586, resulting in abnormal brain development and
subsequent pregnancy termination. Since then, the couple has
been using contraception and therefore does not meet the criteria
for an infertility diagnosis. This implies that they are still capable
of conceiving naturally. Given the autosomal recessive
inheritance pattern, there remains a possibility of achieving a
normal or carrier embryo through natural conception. However,
neither the zero-shot nor the random few-shot–prompted CoT
generations mentioned the presence or absence of an infertility
diagnosis, which appeared in the selective few-shot–prompted
CoT.

To avoid the recurrence of a fetus with a homozygous mutation
in KIAA0586, PGT-M is recommended. Due to the technical
requirements of PGT, embryos must be obtained via ICSI to
avoid DNA contamination during genetic analysis. While the
zero-shot and random few-shot–prompted CoTs correctly
reasoned the indication for PGT-M, they incorrectly concluded
that ICSI was unnecessary because the male partner had normal
semen parameters and suggested using conventional IVF
instead—an error in clinical reasoning.

In selecting the ovarian stimulation protocol, clinical reasoning
typically begins with evaluating the patient’s ovarian
responsiveness and any prior stimulation history. Although the
patient is 26 years of age, her AMH level is only 1.61 ng/mL,
suggesting a potential for diminished ovarian response. As this
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is her first controlled ovarian hyperstimulation cycle, a
gonadotropin-releasing hormone antagonist protocol was chosen
for its controllability and to avoid excessive pituitary
suppression. Among the 2 few-shot–prompted CoTs, the
reasoning was more aligned with clinical thinking, while the
zero-shot CoT emphasized the safety profile of the antagonist
protocol (eg, avoiding ovarian hyperstimulation syndrome)
without clearly reflecting clinical logic.

Regarding the initial gonadotropin dose, factors beyond ovarian
responsiveness must be considered. Since this case involves
PGT, it is important to optimize the number of oocytes retrieved.

Additional considerations include the patient’s weight and BMI,
as these affect drug sensitivity. However, the zero-shot CoT
mentioned only ovarian responsiveness, lacking a
comprehensive rationale.

Feasibility Analysis of an AI Evaluator
As detailed in Table 6, the mean scores for all 3 prompting
strategies were tightly clustered in a narrow and high-scoring
range, between 3.96 and 4.00, suggesting that the model
perceived all generated outputs as being of similarly high
quality.

Table 6. Artificial intelligence (AI)–driven evaluation of chain-of-thought reliability across different prompting strategiesa.

UCKId, mean (SD)PCARc, mean (SD)LCCb, mean (SD)Group

4.00 (0.00)3.98 (0.14)4.00 (0.00)Random few-shot

4.00 (0.07)3.98 (0.16)4.00 (0.00)Selective few-shot

3.98 (0.14)3.96 (0.20)4.00 (0.07)Zero-shot

aThe high scores and minimal variation across all groups indicate a significant ceiling effect in the AI’s evaluation. Paired comparisons between strategies
were conducted using the Wilcoxon signed rank test; P values were adjusted using the Benjamini-Hochberg false discovery rate procedure.
bLCC: logical coherence and clarity.
cUCKI: use and coverage of key information.
dPCAR: plausibility and clinical accuracy of reasoning.

Inferential statistical analysis corroborated this observation. A
series of Friedman tests found no statistically significant
differences among the 3 groups for LCC (P=.37), PCAR
(P=.37), or UCKI (P=.07). While a post-hoc pairwise Wilcoxon
paired test identified a marginal statistical difference between
the random few-shot and zero-shot groups on the information
use dimension (P=.045), this isolated finding merits cautious
interpretation, particularly, as the overall test for this dimension
did not reach statistical significance.

Discussion

Principal Findings
This study critically evaluates the reliability of LLM-generated
CoT reasoning in ART and shows that noncurated prompting
methods are insufficient for clinical use. Both zero-shot and
random few-shot strategies frequently produced reasoning errors,
and random shallow examples offered no meaningful
improvement over providing no examples at all. In contrast, the
selective few-shot strategy, which is built on the principles of
representative diversity and gold-standard depth, substantially
improved coherence, information use, and clinical accuracy.
These reliability gaps, as well as the strengths of the selective
approach, were identifiable only through expert review;
automated AI evaluators failed to detect these differences.
Together, these findings outline a practical framework for
evaluating ART reasoning quality and a feasible pathway for
generating trustworthy synthetic clinical data.

The principle of representative diversity was clearly
demonstrated in the PGT and ICSI subgroups. The findings
provide empirical support for our initial hypothesis. The PGT
category shows significantly higher scores, prompted by the
selective few-shot approach, which includes an example of

PGT-A treatment. The case study also shows errors in
understanding and judgment in doctors’ viewing, where
zero-shot or random few-shot are more likely to make intrinsic
mistakes. Notably, in the ICSI category, although the intergroup
differences did not reach statistical significance when compared
to the random few-shot group, we observed the same trend as
in the PGT category—selective prompting consistently achieved
the highest average scores and was significantly higher than
zero-shot prompting, which had no difference with the random
one. The analyses of both subgroups collectively suggest that
a demonstration set covering key procedural subtypes within
the domain is essential for enabling the model to evolve from
a “specialist” to a “generalist.”

Simultaneously, the principle of gold-standard depth was
illustrated in the IVF subgroup. In our main results, we show
that the quality of examples may influence the quality of
generation. In subgroup analysis, we found that there is no
significant difference between the zero-shot prompting and the
random few-shot prompting on any subgroup, especially in the
IVF subgroup, even if the random arm’s sample cases indeed
included 4 standard IVF and 1 short-protocol IVF. It performed
ineffective learning under this situation. In this case, the reason
may be attributed to the reasoning quality in the prompt. In the
experiment design section, we mentioned that the random cases
have a relatively concise CoT. This indicates that the LLM
exhibits a strong tendency toward pattern imitation when
engaging in in-context learning. A low-quality example tends
to elicit correspondingly poor reasoning outputs, even if the
model has huge potential in text generation. Therefore, this
principle emphasizes that each few-shot example must serve as
an expert-level exemplar: logically rigorous, richly detailed,
and representative of ART strategy reasoning at the highest
standard.
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Comparison to Prior Work
Our findings align closely with a well-established principle in
the broader AI research community: data quality often outweighs
data quantity [36]. Our work provides domain-specific empirical
support for the application of this principle in the reproductive
medicine context of clinical CoT generation. More importantly,
we go beyond simply affirming the importance of data
reliability; we offer a concrete characterization of what
high-quality examples mean in this setting, through our proposed
dual principles of gold-standard depth and representative
diversity. Together, these insights contribute a practical
methodology for realizing data-centric AI specializing in
reproductive medicine.

Another key finding highlights a critical limitation of current
LLM-based evaluators in detecting subtle yet clinically
meaningful variations in information use, logical rigor, and
contextual accuracy. While our human expert assessments
revealed substantial differences in reasoning quality across the
3 prompting strategies, the scores assigned by the AI evaluator
(GPT-4o) showed no statistically significant differences between
them across 3 metrics. This “ceiling effect” serves as a critical
warning: in high-stakes medical applications, like ART strategy
choosing, where patient safety is on the line, relying solely on
automated evaluation for quality assurance is inherently risky.
It reaffirms that domain expert oversight is not merely a “gold
standard” for evaluation; it is an essential safeguard that cannot
be replaced. Our results show that AI-based evaluation cannot
be treated as a source of ground truth; all judgments involving
factual accuracy, clinical appropriateness, or safety must rely
on human experts. From a broader methodological perspective,
the results underscore a growing challenge for the field. As the
development of medical LLMs increasingly depends on
large-scale synthetic data, evaluation may become the primary
bottleneck. While models continue to improve in producing
fluent clinical narratives, reliably detecting subtle but clinically
meaningful reasoning errors remains far more difficult. Without
dependable evaluators, synthetic or augmented clinical data
cannot safely be incorporated into model training pipelines.
Addressing this gap will require medically grounded evaluation
frameworks, including domain-specific supervision signals,
error-aware reward models, and structured representations of
clinical logic. These capabilities are not yet captured by current
general-purpose LLM judges, emphasizing the need for future
research focused on building evaluators that meet the safety,
sensitivity, and domain expertise required for clinical AI
applications.

This study provides evidence within a single-center ART dataset,
and further multicenter generalization is needed. Although we
attempted to determine the reliability of AI-generated CoT in
complex clinical cases, our cases are currently limited to
reproductive medicine or ART treatment. To enhance
generalizability and robustness, future research should include
a more diverse set of complex clinical reasoning cases across
different medical departments. This study has several limitations.
First, all generations were produced using a single model
(DeepSeek-R1), which restricts the external validity of the
findings. Future studies will evaluate whether the advantages
of the selective few-shot strategy generalize across different

LLM families. Second, the use of temperature=0.5 introduces
controlled stochasticity into the inference process; other
decoding settings may produce output variations. To address
this, future work will include sensitivity analyses across multiple
temperature levels (eg, 0, 0.2, and 0.5) to assess the stability of
reasoning patterns. In addition, all human evaluators were
recruited from the same medical center, which may introduce
institutional bias due to shared training backgrounds and practice
standards. The AI-grader feasibility test also has limitations:
the grader’s sensitivity is partly dependent on its prompt design
and model chosen, which may reduce its ability to detect subtle
but clinically important differences within the reasoning block.
Finally, the evaluation was conducted at the case level, and
although the Likert-based rubric captures overall reasoning
quality, subjective variability cannot be fully eliminated. Future
work may incorporate sentence-level or error-type–specific
analysis to support more objective and fine-grained identification
of reasoning deficiencies. Given these constraints, this study
should be interpreted as a vertical, domain-specific
proof-of-concept, rather than a horizontal benchmark applicable
across clinical specialties or model families. The selective
few-shot strategy was examined within ART because it provides
a well-defined and clinically coherent setting for studying
structured reasoning, not because its performance should be
assumed to generalize elsewhere. Whether the observed
improvements reflect a domain-specific phenomenon or a more
general pattern cannot be determined from this study. Future
work will therefore focus on rigorously evaluating the approach
across diverse clinical domains, datasets, and model families
to assess its true generalizability. Beyond the constraints and
limitations, an important consideration of this study is that the
selective few-shot condition differed from the random condition
not only in the conceptual selection principles but also in
exemplar characteristics, including number, clinical depth, and
ART subtype diversity, which creates a mixed signal. Although
the numerical difference between 5-shot and 6-shot prompting
is small, it may nonetheless introduce bias. More importantly,
exemplar depth and subtype diversity were intentionally
incorporated to construct a clinically coherent selective prompt,
but these factors inherently covary in our current design. As a
result, this study cannot attribute the observed improvements
to any single component of the selective strategy nor determine
whether the effect arises from exemplar depth, diversity, their
interaction, or other uncontrolled influences. The findings should
therefore be interpreted as exploratory and
hypothesis-generating, rather than evidence of a validated
mechanism. To address this joint pattern, future work will
implement controlled ablation studies that (1) equalize exemplar
number across conditions and (2) independently manipulate
exemplar depth (“deep vs shallow”) and subtype diversity
(“diverse vs homogeneous”). Such studies will allow rigorous
assessment of the independent and combined contributions of
these factors to few-shot reasoning performance in clinical
LLMs.

Our dataset contains 200 diverse cases, but for some subtypes,
the number of cases may be too small for statistical analysis,
particularly the PGT subgroup, which only included 22 samples.
Although the post-hoc power calculation and P value correction
were conducted, it still showed moderate effect sizes on part of
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the comparisons. Accordingly, the subgroup findings should be
interpreted as exploratory. A potential methodological
improvement for future studies is the use of hierarchical
partial-pooling or Bayesian shrinkage models, which may
borrow strength across subgroups and produce more stable
estimates under low-sample conditions. These models were not
adopted in this study because our primary objective was
descriptive comparison rather than multilevel estimation, but
they represent a promising direction for future research. For
future directions, given the limited context window of current
LLMs, users may face an inherent trade-off when selecting
few-shot exemplars, particularly in domains such as reproductive
medicine where clinical presentations exhibit substantial subtype
diversity. Balancing breadth and depth in exemplar selection
becomes a critical challenge under these constraints. Recent
work on dynamic prompting methods has sought to improve
the performance-efficiency trade-off in resource-limited or
accuracy-constrained settings [37], and incorporating such
techniques may further enhance the practicality of selective
prompting in clinical applications. In addition, future work will
explore retrieval-augmented generation frameworks. Integrating
authoritative domain sources (eg, American Society for
Reproductive Medicine and European Society of Human
Reproduction and Embryology guidelines) has the potential to
improve factual grounding, reduce hallucination, and enhance
explainability in ART-related clinical reasoning. Comparing
closed-book reasoning with retrieval augmented generation
augmented reasoning may clarify how access to external
evidence shapes LLM decision-making and may improve the
reliability of LLM-assisted clinical decision support tools.

Conclusions
The primary contribution of this study is 2-fold: an exploratory
potential evaluation framework for how to evaluate and provide

a methodology for a feasible approach and for how to generate
trustworthy clinical ART reasoning steps in a single clinic
center. First, we investigate a rigorous, domain-grounded
framework for evaluating synthetic clinical reasoning within
the ART strategy. Amid the rapid growth of AI in health care,
we demonstrate that ensuring clinical validity requires moving
beyond automated metrics. Our findings expose the critical
limitations of SOTA AI evaluators (eg, GPT-4o) in detecting
subtle but clinically vital reasoning flaws. This “ceiling effect”
serves as a critical warning and highlights the indispensable
role of structured, blind expert review as an essential safeguard
in reproductive medicine AI development. Second, building on
this evaluation framework, we offer a practical solution to the
“explainability data bottleneck” in reproductive medicine.
Through systematic comparisons, we show that a selective
few-shot prompting strategy, which is based on the “dual
principles” of gold-standard depth and representative diversity,
substantially improves the quality and reliability of generated
ART CoTs. This offers a feasible, cost-effective blueprint for
generating trustworthy ART synthetic data at scale, without
requiring immense annotated datasets. Finally, this study
evaluates the clinical reliability of LLM-generated reasoning
in the ART context as a step toward addressing data scarcity in
explainable, domain-specialized AI development. However,
our findings should not be interpreted as evidence that current
LLMs are clinically safe or ready for autonomous use. Our
evaluation focuses on reasoning quality, not deployment
readiness. Establishing clinical go or no-go thresholds will
require task-specific, prospective validation studies assessing
safety, consistency, patient outcomes, and workflow
integration—factors beyond the scope of this work.
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