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Abstract

Background: High-quality clinical chains-of-thought (CoTs) are essential for explainable medical artificial intelligence (Al);
yet, their development islimited by data scarcity. Large language models can generate medical CoTs, but their clinical reliability
isunclear.

Objective: We evaluated theclinical reliability of large language model—generated CoTsin reproductive medicine and examined
prompting strategies to improve their quality.

Methods: In ablinded comparative study at a clinical center, senior clinicians in assisted reproductive technology evaluated
CoTs generated via 3 distinct strategies. zero-shot, random few-shot (using random shallow examples), and selective few-shot
(using diverse, high-quality examples). Expert ratings were then compared with evaluations from a state-of-the-art Al model
(GPT-40).

Results: The selective few-shot strategy significantly outperformed other strategies acrosslogical clarity, use of key information,
and clinical accuracy (P<.001). Critically, the random few-shot strategy offered no significant improvement over the zero-shot
baseline, demonstrating that low-quality examples are as ineffective as no examples. The success of the selective strategy is
attributed to 2 preliminary frameworks: “gold-standard depth” and “ representative diversity.” Notably, the Al evaluator failed to
discern these critical performance differences. Thus, clinical reliability depends on strategic prompt design rather than simply
adding examples.

Conclusions:  We propose a “dual principles’ preliminary framework for generating trustworthy CoTs at scale in assisted
reproductive technology. Thiswork is a preliminary step toward addressing the data bottleneck in reproductive medicine. It also
underscores the essential role of human expertise in evaluating generated clinical data.

(J Med I nternet Res 2026;28:€85206) doi: 10.2196/85206
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Introduction

Background

Assisted reproductive technology (ART) represents a
cornerstone of modern medicine, offering solutionsfor millions
facing infertility [1]. The clinical decision-making process in
ART is exceptionally complex, requiring the synthesis of
high-dimensional patient data, including baseline characteristics
and medical history. Thisprocessistime-consuming and fraught
with risk for both clinicians and patients, as minute variations
intreatment protocolscan lead to significant adverse outcomes.
Furthermore, clinicians must navigate patients’ personal values
and ethical considerations, demanding a highly personalized
and explainable approach to care [2].

Recent advancementsin artificial intelligence (Al), particularly
large language models (LLMs), have demonstrated considerable
promise for answering medical questions, addressing clinical
case challenges, and augmenting clinical diagnosis[3-7]. Within
clinical decision support systems, these technologies can help
synthesize large amounts of data, facilitating more
comprehensive and standardized therapeutic strategies.
However, while general-purpose LLMs like ChatGPT-4 and
Gemini are powerful, their training on broad, nonspecialized
datalimitstheir utility in niche medical domains. Consequently,
high-performing clinical Al applicationsaretypicaly fine-tuned
from general models using curated, domain-specific datasets
[8-10]. The actual bottleneck, however, is not a lack of raw
clinical data, but aprofound lack of explainable data—datathat
record not just what decision was made, but why. This
meticulous, expert-level reasoning, often captured as a
chain-of-thought (CoT), is the very fuel required to train Al
models that are not just accurate, but also trustworthy and
scalableto clinicians. To move beyond “black-box” predictions,
models require structured reasoning pathways, or CoT data,
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which simulateclinical logic and enhance explainability [11,12].
The challenge, therefore, narrows down to a scarcity of
expert-authored CoT data within the specific area. The manual
creation of such a dataset on a large scale is prohibitively
expensive and time-consuming, presenting asignificant barrier
to progress in explainable medical Al.

To address this challenge, a promising direction is to leverage
the generative capabilities of LLMs to synthesize clinical CoT
data at scale. While this offers a scalable solution to the data
bottleneck, it hinges on a critical, unverified assumption: the
clinical reliability of the generated content. In a high-stakes
domain like ART, this assumption cannot be taken for granted.

Therefore, this study is designed to examine this uncertainty
under the ART setting through a rigorous, head-to-head
empirical comparison. Figure 1 presents the conceptual
framework of our comparative evaluation study. We hypothesize
that a selective few-shot strategy, meticulously crafted with
diverse and deeply reasoned exampl es, will improve the factual
accuracy, logical clarity, and clinical information use of
LLM-generated reasoning in infertility decision-making
scenarios, compared with generic zero-shot and random few-shot
prompting. To test this, we developed a novel prompting
framework and validated it through ablinded eval uation protocol
where senior clinicians from the reproductive department
assessed the quality of CoTsfrom all 3 strategies. In asecondary
analysis, we further contrast these expert assessments against
the state-of-the-art (SOTA) Al evaluator (GPT-40) at that time
to critically examine the current capabilities and limitations of
automated evaluation paradigms, which are widely used in
supervised data generation. Ultimately, this work aims to
establish an exploratory, practical, evidence-based methodol ogy
for the trustworthy generation of clinical reasoning of ART at
scale.
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Figure 1. Conceptual framework of the comparative evaluation study. EHR: electronic health record; LCC: logical coherence and clarity; LLM: large
language model; PCAR: plausibility and clinical accuracy of reasoning; UCKI: use and coverage of key information.
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Main procedure

Clinical evaluation

The study workflow begins with a standardized patient case
(N=200) as the input. Three distinct prompting strategies are
evaluated in paralel pipelines: (1) zero-shot, which uses
instructions only; (2) random few-shot, which uses 5 randomly
selected examples; and (3) selective few-shot, which uses a
curated set of 6 diverse examples representing all major ART
categories in the cases. Each strategy, powered by the same
LLM engine, generates a unique CoT. All 3 generated CoTs
are then subjected to arigorous, blinded “Doctor-in-the-L oop”
evaluation by 2 parallel assessors: human clinical experts (the
gold standard) and the SOTA Al evaluator (GPT-40). Thisdual
evaluation processyieldsthefinal reliability scoresand rankings
for each strategy.

LLMsin Health Care

Since thelaunch of ChatGPT-4, LLMshaverapidly spread into
many industries, such as education, finance, and health care.
For instance, Google's Med-PaLM 2, a leading specialized
health care model, achieved 86.5% accuracy on the MedQA
benchmark, a popular multiple-choice open domain question
answering (OpenQA) medical problems dataset. Furthermore,
its responses were preferred over those of generalist physicians
in 65% of expert evaluations [13]. The LLMs are now used in
many healthcare—related workflows, ranging from medical
documentation assistance to clinica differential diagnosis
[5,14-16]. However, to effectively address highly specialized
tasks, these models are typically fine-tuned from pretrained
LLMsusing carefully curated datasets. Despitetheir impressive
capabilities, current LLMs usually function as black boxes,
producing outputs without offering interpretable reasoning. In
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clinical practice, however, physicians often require not just
answers but al so transparent explanations. Thisrequires models
beyond black-box behavior and provides interpretable,
step-by-step reasoning processes. The increasing reliance on
LLMs has also intensified the demand for high-quality data
[17]. Alarmingly, some predict that the global supply of novel
text data may be exhausted by 2050 and image data by 2060
[18]. In the health care domain, the situation is even more
critical: clinical dataare not only scarce but also highly sensitive
and expensive to obtain. As a result, a central challenge
emerges—how can we build datasets that are both sufficiently
large and clinically trustworthy to support transparent, reliable
medical Al systems?

Synthetic Data in Health Care

To overcome the data shortage in health care, researchers are
increasingly turning to LLMs to create synthetic data. This
approach is promising for several reasons. It alows for data
generation at scale, addressing issues of data scarcity and
privacy [19,20]. Furthermore, synthetic data can be tailored to
balance underrepresented patient groups, potentially improving
model robustness and fairness [21]. Generative models have
demonstrated remarkable success in these areas, with some
studies showing that LLM-generated narratives can be
indistinguishable from those written by physicians [22]. This
potential, however, is inextricably linked to a profound
challenge: reliability. While LLMs can mimic the style of
clinical text, ensuring the factua accuracy and clinical
plausibility of the content is a far more difficult task. For
instance, models have been used to generate both structured
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electronic health records (EHRS) and unstructured clinical notes
[23], but in both cases, the risk of hallucination—where the
model generates incorrect or nonsensical information—poses
a dignificant threat in high-stakes medical applications.
Therefore, the core challenge moves beyond mere data
generation to a more fundamental question of trust. While
studies have shown that synthetic data can be effective for
certain human labeling and fine-tuning tasks [24-28], these
applications often involverelatively straightforward data points.
The problem is magnified when the task requires complex,
multistep medical reasoning. In such scenarios, “ synthetic” must
not equate to “inaccurate.” This underscores the urgent need
for rigorous evaluation methods, not just for the data points
themselves, but for the underlying reasoning processes that
produce clinical decisions. Our work focuses on this critical
next step: assessing the reliability of synthetically generated
reasoning paths.

Chain-of-Thought

CoT isaprompt engineering technique that enhancesthe output
of LLMs, particularly for complex tasks involving multistep
reasoning. It facilitates problem-solving by guiding the model
through a step-by-step reasoning process by using a coherent
series of logical steps [29]. This approach has been shown to
significantly elevate performance on a wide range of complex
reasoning tasks in general domains, especially for arithmetic
problems and logical reasoning tasks [30,31]. To enhance the
reasoning ability in domain-specific tasks, researchers have
started fine-tuning the models with CoTs [12]. Within the
medical domain, the potential of CoT isparticularly compelling.
Its step-by-step nature aligns naturally with the differential
diagnosis and clinical reasoning processes used by physicians.
Consequently, researchers have begun to apply CoT prompting
toimprove accuracy on medical question-answering benchmarks
andin practicediagnosis[11,32]. Moreimportantly, CoT offers
a crucia pathway toward explainable Al in medicine. By
externalizing the model’s reasoning processes, CoT alows
cliniciansto scrutinize, understand, and ultimately trust the Al’s
recommendations, whichisaprerequisitefor its safeintegration
into clinical workflows.

The application of CaT is rapidly evolving. Beyond simple
prompting, a new frontier in clinical Al isthe (1) fine-tuning
of models on datasets enriched with CoT datato build inherently
more explainable systems, which, however, immediately
confronts the fundamental bottleneck of medical Al; and the
(2) prohibitive cost and time required for expert clinicians to
manually author thousands of high-quality reasoning paths for
atraining set. An intuitive and scalable solution is to leverage
foundational LLMs to syntheticaly generate these CoTs,
creating a cost-effective pathway to train the next generation
of trustworthy medical models. However, this entire paradigm
hingeson acritical, yet largely unexamined, question: (3) Isthe
reliability of synthetically generated CoTs adequate to support
their application in complex clinical scenarios? Literature to
date offerslittle guidance. Most research focuseson the extrinsic
value of CoT (ie, improving final answer accuracy), with scant
attention paid to the intrinsic reliability of the reasoning itself.
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A model fine-tuned on flawed, albeit synthetically generated,
logic could learn to produce seemingly correct answers for the
wrong reasons—a risk that is unacceptable in clinical practice.
Furthermore, standardized, expert-driven protocolsfor ng
the clinical validity, coherence, and faithfulness of
machine-generated reasoning are conspicuously absent. Our
study is designed to directly fill this foundational gap. Before
the field can confidently use synthetic CoT for model training
at scale, we must first have a rigorous method to measure its
reliability. Therefore, we propose and implement a blinded,
expert-led evaluation framework to answer the fundamental
question: how reliable is synthetically generated sophisticated
clinical reasoning, and what is the best prompting strategy to
elicitit from LLMs?

Methods

Data Source

From the manually reviewed dataset, we randomly selected 200
cases as our evaluation set, covering a variety of ART. These
ARTs are broadly categorized into 3 generations: in vitro
fertilization (IVF), intracytoplasmic sperminjection (ICSl), and
preimplantation genetic testing (PGT). Each generation includes
severa clinical subtypes, such as short-protocol IVF and IVF
with donor sperm. Among the 200 eval uated cases, |V F accounts
for the largest proportion (140/200, 70%), including standard
IVF (116/200, 58%), I VF with donor sperm (9/200, 4.5%), and
short-protocol 1VF (short-time insemination, 15/200, 7.5%).
The second most common is ICSI (38/200, 19%), comprising
standard I1CSI (26/200, 13%), IVF+ICSI (5/200, 2.5%), and
TESA (testicular sperm aspiration)+ICSl (7/200, 3.5%). PGT
represents 11% (22/200) of the dataset, including
preimplantation genetic testing for aneuploidies (PGT-A; 6/200,
3%), preimplantation genetic testing for monogenic disorder
(PGT-M; 3/200, 1.5%), and PGT for structural rearrangements
(13/200, 6.5%).

As shown in Table 1, the dataset consisted of three main
components: (1) a structured set of baseline and demographic
variables, (2) the preliminary diagnosis and treatment plan, and
(3) an unstructured narrative description of the present illness
history. The structured baseline data served as the quantitative
and categorical foundation for clinical assessment, encompassing
key indicators of ovarian reserve such asanti-M{illerian hormone
and basdline follicle-stimulating hormone levels. The
unstructured narrative provided essential clinical context,
offering a detailed account of the patient's medical journey,
which is critical for nuanced and context-aware medical
reasoning. The output data, labeled as preliminary diagnosis
and treatment plan, reflects the clinical conclusions and
therapeutic strategies formulated by human experts in prior
encounters. Thiscomponent serves asthe ground truth outcome.
The LLM’s task is to generate a reasoning path that logically
connectsthe patient’sinput datato this expert-defined outcome.
A detailed breakdown of all case data variables, including
structured baseline indicators and narrative clinical history, is
provided in Multimedia Appendix 1. Together, these inputs
formed the foundation for CoT generation and model eval uation.
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Table 1. Structure and description of input and output variables for each case®.

Category Variable

Baseline and demographics Female age
Menstrual cycle
Body weight
BMI

Present illness history .

Preliminary diagnosis and treatment plan

Anti-Mullerian hormone level

Duration of infertility

Gynecological ultrasound findings
Baseline fallicle-stimulating hormone level

Present illness history

Type of infertility

Controlled ovarian stimulation protocol

Initial gonadotropin dosage

Preliminary differential diagnosis

Initial assisted reproductive technology strategy

8This table outlines the variables provided to the large language model for each case, categorized into input (baseline and demographic and present
illness history) and output (preliminary diagnosis and treatment plan). These variables form the basis for the chain-of-thought generation task.

Ethical Consider ations

A set of EHRsrecorded between 2020 and 2022 in the I nfertility
Outpatient Department at West China Second University
Hospital was considered in this study. The study was approved
by the ingtitutional review board of West China Second
University Hospital, Sichuan University (ID: 2022288). The
EHRs have been manually reviewed and corrected to ensure
data accuracy. All EHR data used in this study were fully
deidentified before being accessed by the research team. The
deidentification procedure followed HIPAA (Health Insurance
Portability and Accountability Act) Safe Harbor standards,
including the removal of al direct identifiers (eg, name, date
of birth, medical record number, contact information, and
provider information) and al quasi-identifiers (eg, dates,
locations, and institutional identifiers). Only aggregated clinical
descriptors necessary for the reasoning task (eg, high-level
patient history and laboratory summaries) wereretained. Access
to the deidentified dataset was restricted to authorized study
personnel through institution-managed credential s and encrypted
storage. Reviewers performing the blinded eval uation accessed
only the deidentified clinical vignettes and model-generated
reasoning content through a secure, read-only interface; no
downloads or reidentification attempts were permitted. All
accesswas|ogged and monitored by aninternal auditor to ensure
compliancewith institutional clinical datagovernance policies.
Because the study used retrospective, fully deidentified EHRS,
the requirement for updated informed consent for thefollowing
analysis was waived by the institutional review board in
accordance with national regulations. No participants were
contacted for this study, and no compensation was provided to
participants.

Experiment Design

Overview

To systematically evaluate the reliability of LLM-generated
CoT and to determine the impact of different prompting
strategies, we designed a comparative study. The experiment

https://www.jmir.org/2026/1/e85206

was structured into 3 distinct arms, each representing adifferent
level of contextua information provided to the model. Our
design philosophy was to create a controlled, stepwise
comparison to isolate the effects of in-context examples and
the strategy used for their selection.

All 3 groups used the evaluation dataset (N=200) described in
the data source, making sure of a fair comparison. A capable
“Teacher Model” is key to generating better-quality data [33].
Considering the models performance so far, we used the
open-source model DeepSeek-R1-671b, which was known for
its outstanding reasoning capability, as our consistent model
shared by 3arms[34]. Acrossall 3arms, theLLM wasassigned
the same core task: generating a detailed, step-by-step ART
CoT by integrating all provided patient information and the
corresponding expert-provided reference output. All the
inference was conducted via the application programming
interface call. The model was executed with temperature=0.5
and max tokens=5000. We used temperature=0.5 to reflect
typical clinical-LLM use, where deterministic decoding
(temperature=0) may produce rigid or incomplete clinical
reasoning. All prompting strategies were evaluated under
identical generation settings to ensure fair comparison.

Group 1. Zero-Shot Baseline

In this group, we aimed to establish a fundamental baseline to
evaluate the out-of-the-box clinical reasoning capabilities of
general-purpose LLMs when applied to this specialized task.
To this end, the model was prompted using a standardized
directiveinstruction, with each clinical case embedded directly
into the prompt (see Multimedia Appendix 2 for details). The
outputs generated by the model, along with corresponding
physician evaluations, served asaperformancefloor, quantifying
the baseline reliability and limitations of an unadapted LLM in
handling novel clinical scenarios.

Group 2: Random Few-Shot Prompting

This experimental arm was designed to establish a baseline for
a standard, nonoptimized few-shot approach. Its purpose was
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to measure theimpact of providing generic, in-domain examples
without a specific selection strategy. For each of the 200 test
cases, the prompt was initially prepared with a fixed set of 5
examples to provide context for the model. These 5 examples
were randomly sampled from our expert-authored data pool,
excluding the existing evaluation dataset. The sample set used
in the prompt for every test case consisted of 4 standard IVF
casesand 1 short-protocol |VF case, accompanied by aconcise
reasoning chain authored by domain experts. The prompt
structure and instructions were otherwise identical to those in
the other arms. A representative example of afew-shot sample,
detailing the input data and expert-written CoT, is provided in
Multimedia Appendix 2. This approach represents a “naive”
few-shot implementation. It is designed to test the hypothesis
that the mere presence of in-domain examples, even without
being specificaly tailored to the test case, is sufficient to
improve reasoning quality compared to the zero-shot baseline.

Group 3: Selective Few-Shot Prompting

This arm represents our proposed method and was designed to
test the hypothesis that a deliberately curated set of diverse
examples would improve reasoning reliability and
generalization. Instead of random sampling, this approach used
a clinicaly informed, representative selection strategy.
Physicians curated a set of 6 exemplary cases from a pool of
records not included in the 200 evaluation set (to prevent data
leakage). These 6 exampleswere specifically chosen to represent
thefull spectrum of major ART categories present in our dataset,
including IVF (standard 1V F, short-protocol IVF, and IVF with
donor sperm), ICSI, TESA+ICSI, and PGT (PGT-A). Their
reasoning part was carefully crafted and covered all critical
steps. The complete prompt is provided in Multimedia A ppendix
2. For every test case, this same curated set of 6 diverse
examples was prepended to the prompt. The purpose of this
strategy was to provide the model with comprehensive and
representative clinical guidance within the prompt itself.

In summary, this 3-arm design allowsfor amultifaceted analysis
of CoT reliability. The comparison between group 1 and group
2 will isolate the general benefit of using in-context examples.
The critical comparison between group 2 and group 3 will

Table 2. Rubric for the evaluation of chain-of-thought (CoT) reliability?.

Liuetd

determine whether our proposed selective prompting strategy
provides a statistically significant improvement over arandom
baseline. Together, these comparisons will build a clear
evidence-based argument for theimportance of awell-designed
prompting strategy in generating reliable and accurate clinical
reasoning.

Evaluation Metrics

Physician Evaluation

The evaluation was conducted by a panel of 2 board-certified
reproductive physicians. Both subject matter expertsare faculty
members at the same academic medical center but work
independently in separate clinical teams. They were invited
through an internal clinical research collaboration mechanism,
and participation was voluntary. Their sole role wasto perform
ablinded evaluation of the CoTs. Each evaluator possesses over
10 years of clinical experience in the field of ART. Prior to the
formal evaluation, a calibration session was held where al
evaluators scored 10 cases together. Any discrepancies were
discussed to ensure a consistent understanding of the criteria.
During the blinded eval uation, each physician reviewer received
only the clinical vignette and the model-generated reasoning
content. All identifying information, model names, and
prompting strategies were removed to ensure full masking. The
order of cases and strategies wasindependently randomized for
each reviewer to prevent any presentation bias. Each physician
independently scored the complete dataset without discussing
their ratings with other reviewers. No reviewer saw any
ground-truth labels or model metadata during the evaluation
process.

In this study, we created an evaluation metric involving 3
dimensions. logical coherence and clarity (LCC), use and
coverage of key information (UCKI), and plausibility and
clinical accuracy of reasoning (PCAR). All generated CoTs
were scored by the 5-point Likert scale (1=poor and 5=excdllent)
across 3 key dimensions of reliability, as shown in Table 2 and
detailed in Multimedia Appendix 3. All paired comparison
results are tested using the Wilcoxon test and adjusted for false
discovery rate (FDR).

Metric Definition

Logical coherence and clarity
clearly and understandably.

Use and coverage of key information
presented in the input.

Plausibility and clinical accuracy of reason-

Assesses whether the reasoning processis internaly consistent, logically structured, and expressed

Evaluates the extent to which the reasoning incorporates and addresses relevant clinical data points

Measures whether the reasoning is clinically sound, aligns with standard medical knowledge, and leads

ing to areasonabl e interpretation or decision. Deduct points as appropriate across the 4 partsin the analysis.

#The table defines the 3 dimensions: logical coherence and clarity, use and coverage of key information, and plausibility and clinical accuracy of
reasoning, used by both human experts and the artificial intelligence evaluator to assess the quality of generated CoTs on a 5-point Likert scale.

Al Grader Evaluation

In addition to manual evaluation conducted by human experts,
we implemented a supplementary evaluation component
leveraging awidely used LLM verifier [35], GPT-40, to explore

https://www.jmir.org/2026/1/e85206

its feasibility as an automated evaluator of clinical reasoning.
This design enables adirect comparison between Al-generated
assessments and the human gold standard, thereby evaluating
the feasibility of using LLMsfor quality control in large-scale
synthetic dataset generation. To ensure comparability, the
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evaluation criteria provided to the Al model were identical to
those outlined in Table 2, including definitions of logical
coherence, clinical appropriateness, and key information use.
The detailed prompt can be found in Multimedia Appendix 2.
Each instruction consists of 2 blocks: the evaluation rubric and
case vignette.

Statistical Analysis

All gtatistical analyseswere conducted in Python (pandas, SciPy,
and statsmodels, Python Software Foundation). Each case
(N=200) was independently evaluated under 3 prompting
strategies (zero-shot, random few-shot, and selective few-shot)
across 3 dimensions: LCC, UCKI, and PCAR. Results are
reported as mean (SD), with exact n values indicated in tables.
To assess the reliability of the physician ratings, we evaluated
agreement using three complementary measures: (1) linear
weighted K, (2) adjacent agreement rate (percentage of paired
scores within £1 point), and (3) raw interrater disagreement
rates. Because the rating distributions exhibited strong ceiling
effects (scores concentrated around 4-5), linear weighted K is
known to underestimate agreement under low variance
conditions, a well-described statistical paradox. Therefore, in
addition to reporting k values for compl eteness, we emphasized
adjacent agreement and disagreement rates, which more
accurately capture clinical consensus when rating scales are
narrow. Across al 600 evaluations (200 casesx3 strategies),
disagreement rates were uniformly low, confirming strong
consistency between the 2 raters. The selective few-shot strategy
showed the lowest disagreement (LCC: 0.00, PCAR: 0.03,
UCKI: 0.02), followed by the zero-shot (LCC: 0.04, PCAR:
0.04, UCKI: 0.07) and random few-shot strategies (LCC: 0.12,
PCAR: 0.09, UCKI: 0.07). The highest disagreement observed
across al metrics was only 12%. Adjacent agreement was
correspondingly high, ranging from 88% to 100% depending
on the metric and strategy, indicating excellent practical
concordance despite the compressed scoring range. Given these
properties, interrater reliability wasinterpreted primarily through
adjacent agreement and disagreement rates, while k statistics
were retained as aformal but secondary indicator.

Normality of paired differences was assessed using the
Shapiro-Wilk test and Q-Q plots. Because the eval uation scores
are 5-point Likert ratings, the paired differencestake on only a

Liuetd

small number of discretevalues (-2, -1, 0, +1, +2). Asexpected
with large samples and discrete Likert data, the Shapiro-Wilk
was extremely sensitive and returned significant results;
however, Q-Q plots showed no meaningful deviations from
approximate linearity beyond the expected discreteness.
Parametric tests are generally robust to moderate deviations
from normality in Likert-type data, especially with larger sample
sizes. We retained the nonparametric Wilcoxon paired tests as
primary analyses. All the statistical test details can be checked
in Multimedia Appendix 4.

To account for multiple pairwise comparisons across the
prompting conditions and evaluation metrics in the subgroups,
adjusted P valueswere cal culated using the Benjamini-Hochberg
FDR correction acrossal 9 contrasts (3 comparisons per metric).
For each metric, paired comparisons were conducted using
Wilcoxon paired tests, and both the raw and FDR-adjusted P
valueswerereported. A post-hoc power analysiswas performed.
For each evaluation metric, Cohen d effect sizeswere computed
using the pooled SD of paired observations. This analysis was
conducted to assessthe stability of estimatesunder small-sample
conditions.

Results

Overview

All the results were obtained through the evaluation dataset
(N=200), including severa kindsof ART. Asmentioned earlier,
3 metrics were used for evaluation: LCC, UCKI, and PCAR.
The evaluation was done by apanel of experienced practitioners.

General Performance

Table 3 presents the average scores of each prompting strategy
on LCC, UCKI, and PCAR. The selective few-shot strategy
outperformed both zero-shot and random few-shot approaches
across all 3 metrics. Specifically, it achieved mean scores of
4.56 (SD 0.50), 4.66 (SD 0.53), and 4.18 (SD 0.56), which were
significantly higher than those of the zero-shot strategy (mean
4.18, SD 0.56; mean 4.30, SD 0.63; mean 3.85, SD 0.53,
respectively; all P and adjusted P<.001; Cohen d=0.72, 0.61,
0.61) and the random few-shot strategy (mean 4.31, SD 0.64;
mean 4.42, SD 0.58; mean 3.91, SD 0.63, respectively; al P
and adjusted P<.001; Cohen d=0.45, 0.42, 0.46).

Table 3. The performance of the “zero-shot,” “random few-shot,” and “selective few-shot” strategies (N=200 cases per group)2

Strategy LCCP, mean (SD) UCKIS, mean (SD) PCARY, mean (SD)
Zero-shot 4.18 (0.56) 430 (0.63) 3.85(0.53)
Random few-shot 4.31(0.64) 4.42 (0.58) 3.91(0.63)
Selective few-shot 456 (0.50) 4.66 (0.53) 4.18 (0.56)

Ailcoxon test used for paired comparisons; P val ues adjusted using the Benjamini-Hochberg false discovery rate procedure.

b_cc: logical coherence and clarity.
CUCKI: use and coverage of key information.
dpCAR: plausibility and clinical accuracy of reasoning.

Notably, there was no statistically significant difference between
the zero-shot and random few-shot groups on PCAR, though

https://www.jmir.org/2026/1/e85206

samples did improve the model’s capability on LCC and UCKI
statistically significantly.
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wedid an analysisgrouped by ART. Table 4 presentsthe scores
of 3 ART generations.

Subgroup Analysis
To further dig into the reasonsfor sel ective few-shot’swinning,

Table 4. Subgroup analysis by assisted reproductive technology (ART) category?,

ART and strategy LccP UCKI® PCARY
IVFE
Zero 4.20 (0.57) 4.34(0.61) 3.88(0.53)
Random 4.29 (0.67) 4.44 (0.53) 3.90 (0.65)
Selective 459 (0.49) 4,69 (0.51) 4.20 (0.55)
icsif
Zero 4.16 (0.59) 4.29 (0.65) 3.87 (0.53)
Random 4.37 (0.54) 4.45 (0.69) 3.97 (0.59)
Selective 4.45 (0.50) 4,53 (0.60) 4.11 (0.56)
PGTY
Zero 4.09 (0.43) 4.05(0.72) 3.64 (0.49)
Random 4.32 (0.57) 4.27 (0.70) 3.86 (0.56)
Selective 459 (0.50) 4,68 (0.48) 4.18 (0.59)

3Subgroup analyses were based on the respective case counts (IVF: n=140; ICSI: n=38; PGT: n=22). Thistable aimsto further investigate the performance
differences of various prompting strategies across specific clinical scenarios. To achieve this, we categorized the 200 evaluation cases based on their
primary type of ART, including IVF, ICSI, and PGT, and conducted a comparative analysis of evaluation outcomes within each group. Wilcoxon test

used for paired comparisons; P values adjusted using the Benjamini-Hochberg fal se discovery rate procedure.

b cc: logical coherence and clarity.

CUCKI: use and coverage of key information.

dPCAR: plausibility and clinical accuracy of reasoning.
®IVF: in vitro fertilization.

ficst: intracytoplasmic sperm injection.

9PGT: preimplantation genetic testing.

Inthelargest subgroup, IVF (n=140), akey distinction emerged.
Whilethe sel ective few-shot strategy significantly outperformed
both other groups across all metrics (P<.001 and adjusted
P<.001 for al comparisons, selective vs zero: Cohen d=0.72,
0.61, 0.59; selective vs random: Cohen d=0.51, 0.49, 0.50),
therewas no statistically significant difference observed between
the random few-shot and zero-shot strategies (P=.19, .69, .10;
adjusted P=.22, .69, .13).

The analysis of the PGT subgroup (n=22) revealed the clearest
advantage for prompt diversity. The selective few-shot strategy,
which was the only prompt containing a PGT example,
outperformed the random few-shot strategy acrossall 3 metrics:
logical coherence (LCC: P=.03; adjusted P=.05; Cohen d=0.51),
information use (UCKI: P<.001; adjusted P=.01; Cohen d=0.55),
and clinical accuracy (PCAR: P=.03; adjusted P=.05; Cohen
d=0.68). Consistent with other findings, the random few-shot
strategy showed no significant improvement over the zero-shot
baselinein this category (LCC: P=.17; adjusted P=.19; Cohen
d=0.45; UCKI: P=.27; adjusted P=.27; Cohen d=0.32; PCAR:
P=.13; adjusted P=.17; Cohen d=0.43, respectively). However,
we must admit that the limited sample size makes the subgroup
analysis partially underpowered, and these comparisons should
be interpreted with caution.

https://www.jmir.org/2026/1/e85206

A similar pattern emerged in the ICSI subgroup (n=38). The
selective few-shot strategy again demonstrated a measurable
advantage. It achieved statistically significant improvements
over the zero-shot baseline in 2 of the 3 key metrics: LCC
(P=.02; adjusted P=.15; Cohen d=0.53) and PCAR (P=.04;
adjusted P=.17; Cohen d=0.44). Although these comparisons
did not remain significant after FDR adjustment, the effect sizes
were moderate, and the directionality was consistent with the
overdl findings. For UCKI, the sel ective strategy again achieved
the highest mean score, but this comparison did not reach
significance (P=.06; adjusted P=.17), suggesting a positive but
dtatistically inconclusivetrend. The detailed subgroup statistical
results can be checked in Multimedia Appendix 4.

Case Study

As shown in Figure 2, to qualitatively illustrate the stark
differences in reasoning quality revealed by our quantitative
analysis, we selected a representative and complex case
involving PGT-M. This case is particularly illustrative, as it
requires a multilayered understanding of genetics, ART
procedures, and individualized patient factors. The main
mistakes are listed in Table 5.
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Figure2. Representative PGT-M caseillustrating qualitative differencesin CoT reasoning across prompting strategies. Thisfigure presents arepresentative
and complex case involving PGT-M, selected to qualitatively illustrate the differences in reasoning quality observed in our quantitative analyses. The
left panel shows the patient’s clinical information, the correct physician’s answer, and the color-coded annotation scheme (red: incorrect reasoning,
yellow: irrelevant reasoning, and green: correct reasoning). The right panel displays the CoT outputs generated under zero-shot, random few-shot, and
selective few-shot prompting strategies. Compared with the zero-shot and random few-shot generations, which omitted critical reasoning steps (eg, the
presence of infertility diagnosis, theindication for intracytoplasmic sperm injection, and comprehensive gonadotropin dose considerations), the selective
few-shot prompting was more closely aigned with clinical logic and included relevant patient-specific factors. CoT: chain-of-thought; PGT-M:

preimplantation genetic testing for monogenic disorder.
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Table5. Common reasoning errorsin zero-shot and random few-shot chain-of-thought (CoT) outputs for a prei mplantation genetic testing for monogenic

disorder case.

Reasoning dimension Flaws in zero-shot and random few-shot

Diagnosis reasoning
Assisted reproduction decision

Ovarian stimulation protocol se-
lection

Initial gonadotropin dose
embryos).

The model does not mention whether the patient has infertility issues.
CoT incorrectly assumes that if the male’s semen is normal, traditional 1VF? can be used.

The reason for choosing the antagonist protocol in CoT was “greater safety and avoidance of OH SSb without
considering the patient’s specific circumstances (low AMH, first ovulation induction).

Only AMH® levels were considered, without taking into account weight, BMI, or PGTY goals (requiring more

#VF: in vitro fertilization.

POHSS: ovarian hyperstimulation syndrome.
CAMH: anti-Miillerian hormone.

4pGT: preimplantation genetic testing.

In this PGT-M case, both partners are carriers of a pathogenic
variant in the KIAA0586 gene. During a previous pregnancy,
the fetus was found to have a homozygous mutation in
KIAA0586, resulting in abnorma brain development and
subsequent pregnancy termination. Since then, the couple has
been using contraception and therefore does not meet the criteria
for aninfertility diagnosis. Thisimpliesthat they are till capable
of conceiving naturaly. Given the autosomal recessive
inheritance pattern, there remains a possibility of achieving a
normal or carrier embryo through natural conception. However,
neither the zero-shot nor the random few-shot—prompted CoT
generations mentioned the presence or absence of an infertility
diagnosis, which appeared in the sel ective few-shot—prompted
CoT.

https://www.jmir.org/2026/1/e85206
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To avoid the recurrence of afetus with ahomozygous mutation
in KIAA0586, PGT-M is recommended. Due to the technical
requirements of PGT, embryos must be obtained via ICSI to
avoid DNA contamination during genetic analysis. While the
zero-shot and random few-shot—prompted CoTs correctly
reasoned theindication for PGT-M, they incorrectly concluded
that | CSI was unnecessary because the male partner had normal
semen parameters and suggested using conventional I1VF
instead—an error in clinical reasoning.

In selecting the ovarian stimulation protocol, clinical reasoning
typicaly begins with evaluating the patient's ovarian
responsiveness and any prior stimulation history. Although the
patient is 26 years of age, her AMH level is only 1.61 ng/mL,
suggesting a potential for diminished ovarian response. Asthis
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is her first controlled ovarian hyperstimulation cycle, a
gonadotropin-releasing hormone antagonist protocol was chosen
for its controllability and to avoid excessive pituitary
suppression. Among the 2 few-shot—prompted CoTs, the
reasoning was more aligned with clinical thinking, while the
zero-shot CoT emphasized the safety profile of the antagonist
protocol (eg, avoiding ovarian hyperstimulation syndrome)
without clearly reflecting clinical logic.

Regarding theinitial gonadotropin dose, factors beyond ovarian
responsiveness must be considered. Since this case involves
PGT, it isimportant to optimize the number of cocytesretrieved.

Liuetd

Additional considerationsincludethe patient’sweight and BMI,
as these affect drug sensitivity. However, the zero-shot CoT
mentioned only ovarian responsiveness, lacking a
comprehensive rationale.

Feasibility Analysis of an Al Evaluator

As detailed in Table 6, the mean scores for all 3 prompting
strategies were tightly clustered in a narrow and high-scoring
range, between 3.96 and 4.00, suggesting that the model
perceived all generated outputs as being of similarly high
quality.

Table 6. Artificial intelligence (Al)—driven evaluation of chain-of-thought reliability across different prompting strategies®.

PCARS, mean (SD)

UcKI19, mean (SD)

Group LCCP, mean (SD)
Random few-shot 4.00 (0.00)
Selective few-shot 4.00 (0.00)
Zero-shot 4.00 (0.07)

3.98(0.14) 4.00 (0.00)
3.98 (0.16) 4.00 (0.07)
3.96 (0.20) 3.98(0.14)

#The high scoresand minimal variation acrossall groupsindicate asignificant ceiling effect in the Al's eval uation. Paired comparisons between strategies
were conducted using the Wilcoxon signed rank test; P values were adjusted using the Benjamini-Hochberg fal se discovery rate procedure.

b cc: logical coherence and clarity.
CUCKI: use and coverage of key information.
dPCAR: plausibility and clinical accuracy of reasoning.

Inferential statistical analysis corroborated this observation. A
series of Friedman tests found no satistically significant
differences among the 3 groups for LCC (P=.37), PCAR
(P=.37), or UCKI (P=.07). While apost-hoc pairwise Wilcoxon
paired test identified a marginal statistical difference between
the random few-shot and zero-shot groups on the information
use dimension (P=.045), this isolated finding merits cautious
interpretation, particularly, asthe overall test for thisdimension
did not reach statistical significance.

Discussion

Principal Findings

Thisstudy critically evaluatesthe reliability of LLM-generated
CoT reasoning in ART and shows that noncurated prompting
methods are insufficient for clinical use. Both zero-shot and
random few-shot strategies frequently produced reasoning errors,
and random shalow examples offered no meaningful
improvement over providing no examplesat all. In contrast, the
selective few-shot strategy, which is built on the principles of
representative diversity and gold-standard depth, substantially
improved coherence, information use, and clinical accuracy.
These reliability gaps, as well as the strengths of the selective
approach, were identifiable only through expert review;
automated Al evaluators failed to detect these differences.
Together, these findings outline a practical framework for
evaluating ART reasoning quality and a feasible pathway for
generating trustworthy synthetic clinical data.

The principle of representative diversity was clearly
demonstrated in the PGT and ICSI subgroups. The findings
provide empirical support for our initial hypothesis. The PGT
category shows significantly higher scores, prompted by the
selective few-shot approach, which includes an example of

https://www.jmir.org/2026/1/e85206

PGT-A treatment. The case study also shows errors in
understanding and judgment in doctors viewing, where
zero-shot or random few-shot are more likely to make intrinsic
mistakes. Notably, inthe ICS| category, although theintergroup
differences did not reach statistical significance when compared
to the random few-shot group, we observed the same trend as
inthe PGT category—sel ective prompting consistently achieved
the highest average scores and was significantly higher than
zero-shot prompting, which had no difference with the random
one. The analyses of both subgroups collectively suggest that
a demonstration set covering key procedural subtypes within
the domain is essential for enabling the model to evolve from
a“specialist” to a“generalist”

Simultaneously, the principle of gold-standard depth was
illustrated in the IVF subgroup. In our main results, we show
that the quality of examples may influence the quality of
generation. In subgroup analysis, we found that there is no
significant difference between the zero-shot prompting and the
random few-shot prompting on any subgroup, especialy in the
IVF subgroup, even if the random arm’s sample cases indeed
included 4 standard I VF and 1 short-protocol 1VF. It performed
ineffective learning under this situation. In this case, the reason
may be attributed to the reasoning quality in the prompt. In the
experiment design section, we mentioned that the random cases
have a relatively concise CoT. This indicates that the LLM
exhibits a strong tendency toward pattern imitation when
engaging in in-context learning. A low-quality example tends
to elicit correspondingly poor reasoning outputs, even if the
model has huge potential in text generation. Therefore, this
principle emphasizes that each few-shot example must serve as
an expert-level exemplar: logically rigorous, richly detailed,
and representative of ART strategy reasoning at the highest
standard.
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Comparison to Prior Work

Our findings aign closely with a well-established principlein
thebroader Al research community: dataquality often outweighs
dataquantity [36]. Our work provides domain-specific empirical
support for the application of this principle in the reproductive
medicine context of clinical CoT generation. Moreimportantly,
we go beyond simply affirming the importance of data
reliability; we offer a concrete characterization of what
high-quality examples mean in this setting, through our proposed
dual principles of gold-standard depth and representative
diversity. Together, these insights contribute a practical
methodology for realizing data-centric Al specidizing in
reproductive medicine.

Another key finding highlights a critical limitation of current
LLM-based evaluators in detecting subtle yet clinicaly
meaningful variations in information use, logical rigor, and
contextual accuracy. While our human expert assessments
revealed substantial differencesin reasoning quality acrossthe
3 prompting strategies, the scores assigned by the Al evaluator
(GPT-40) showed no statistically significant differences between
them across 3 metrics. This “ceiling effect” servesasacritical
warning: in high-stakes medical applications, like ART strategy
choosing, where patient safety is on the line, relying solely on
automated evaluation for quality assurance isinherently risky.
It reaffirms that domain expert oversight is not merely a“gold
standard” for evaluation; it isan essential safeguard that cannot
be replaced. Our results show that Al-based evaluation cannot
be treated as a source of ground truth; al judgments involving
factual accuracy, clinical appropriateness, or safety must rely
on human experts. From abroader methodol ogical perspective,
the results underscore a growing challenge for the field. Asthe
development of medical LLMs increasingly depends on
large-scal e synthetic data, evaluation may become the primary
bottleneck. While models continue to improve in producing
fluent clinical narratives, reliably detecting subtle but clinically
meaningful reasoning errorsremainsfar more difficult. Without
dependable evaluators, synthetic or augmented clinical data
cannot safely be incorporated into model training pipelines.
Addressing thisgap will require medically grounded evaluation
frameworks, including domain-specific supervision signals,
error-aware reward models, and structured representations of
clinical logic. These capabilities are not yet captured by current
general-purpose LLM judges, emphasizing the need for future
research focused on building evaluators that meet the safety,
sensitivity, and domain expertise required for clinical Al
applications.

Thisstudy providesevidencewithin asingle-center ART dataset,
and further multicenter generalization is needed. Although we
attempted to determine the reliability of Al-generated CoT in
complex clinical cases, our cases are currently limited to
reproductive medicine or ART treatment. To enhance
generalizability and robustness, future research should include
a more diverse set of complex clinical reasoning cases across
different medical departments. Thisstudy has several limitations.
First, all generations were produced using a single model
(DeepSeek-R1), which restricts the external validity of the
findings. Future studies will evaluate whether the advantages
of the selective few-shot strategy generalize across different

https://www.jmir.org/2026/1/e85206
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LLM families. Second, the use of temperature=0.5 introduces
controlled stochasticity into the inference process; other
decoding settings may produce output variations. To address
this, future work will include sensitivity analyses across multiple
temperature levels (eg, 0, 0.2, and 0.5) to assess the stability of
reasoning patterns. In addition, all human evaluators were
recruited from the same medical center, which may introduce
institutional bias dueto shared training backgrounds and practice
standards. The Al-grader feasibility test also has limitations:
the grader’s sensitivity is partly dependent on its prompt design
and model chosen, which may reduceits ability to detect subtle
but clinically important differences within the reasoning block.
Finally, the evaluation was conducted at the case level, and
although the Likert-based rubric captures overall reasoning
quality, subjective variability cannot befully eliminated. Future
work may incorporate sentence-level or error-type-specific
analysisto support more objective and fine-grained identification
of reasoning deficiencies. Given these constraints, this study
should be interpreted as a vertica, domain-specific
proof-of-concept, rather than a horizontal benchmark applicable
across clinical specialties or model families. The selective
few-shot strategy was examined within ART becauseit provides
a well-defined and clinically coherent setting for studying
structured reasoning, not because its performance should be
assumed to generalize elseawhere. Whether the observed
improvements reflect a domain-specific phenomenon or amore
general pattern cannot be determined from this study. Future
work will therefore focus on rigorously evaluating the approach
across diverse clinical domains, datasets, and model families
to assess its true generalizability. Beyond the constraints and
limitations, an important consideration of this study is that the
sel ective few-shot condition differed from the random condition
not only in the conceptual selection principles but also in
exemplar characteristics, including number, clinical depth, and
ART subtype diversity, which createsamixed signal. Although
the numerical difference between 5-shot and 6-shot prompting
issmall, it may nonetheless introduce bias. More importantly,
exemplar depth and subtype diversity were intentionally
incorporated to construct aclinically coherent selective prompt,
but these factors inherently covary in our current design. Asa
result, this study cannot attribute the observed improvements
to any single component of the selective strategy nor determine
whether the effect arises from exemplar depth, diversity, their
interaction, or other uncontrolled influences. Thefindings should
therefore be  interpreted as  exploratory and
hypothesis-generating, rather than evidence of a validated
mechanism. To address this joint pattern, future work will
implement controlled ablation studiesthat (1) equalize exemplar
number across conditions and (2) independently manipulate
exemplar depth (“deep vs shallow”) and subtype diversity
(“diverse vs homogeneous”). Such studies will allow rigorous
assessment of the independent and combined contributions of
these factors to few-shot reasoning performance in clinical
LLMs.

Our dataset contains 200 diverse cases, but for some subtypes,
the number of cases may be too small for statistical analysis,
particularly the PGT subgroup, which only included 22 samples.
Although the post-hoc power cal culation and P value correction
were conducted, it still showed moderate effect sizes on part of
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the comparisons. Accordingly, the subgroup findings should be
interpreted as exploratory. A potential methodological
improvement for future studies is the use of hierarchical
partial-pooling or Bayesian shrinkage models, which may
borrow strength across subgroups and produce more stable
estimates under low-sample conditions. These modelswere not
adopted in this study because our primary objective was
descriptive comparison rather than multilevel estimation, but
they represent a promising direction for future research. For
future directions, given the limited context window of current
LLMs, users may face an inherent trade-off when selecting
few-shot exemplars, particularly in domains such asreproductive
medicinewhere clinical presentationsexhibit substantial subtype
diversity. Balancing breadth and depth in exemplar selection
becomes a critical challenge under these constraints. Recent
work on dynamic prompting methods has sought to improve
the performance-efficiency trade-off in resource-limited or
accuracy-constrained settings [37], and incorporating such
techniques may further enhance the practicality of selective
prompting in clinical applications. In addition, future work will
exploreretrieval-augmented generation frameworks. Integrating
authoritative domain sources (eg, American Society for
Reproductive Medicine and European Society of Human
Reproduction and Embryology guidelines) has the potential to
improve factual grounding, reduce hallucination, and enhance
explainability in ART-related clinical reasoning. Comparing
closed-book reasoning with retrieval augmented generation
augmented reasoning may clarify how access to external
evidence shapes LLM decision-making and may improve the
reliability of LLM-assisted clinical decision support tools.

Conclusions

The primary contribution of this study is 2-fold: an exploratory
potential evaluation framework for how to evaluate and provide
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amethodology for afeasible approach and for how to generate
trustworthy clinical ART reasoning steps in a single clinic
center. First, we investigate a rigorous, domain-grounded
framework for evaluating synthetic clinical reasoning within
the ART strategy. Amid the rapid growth of Al in health care,
we demonstrate that ensuring clinical validity requires moving
beyond automated metrics. Our findings expose the critical
limitations of SOTA Al evaluators (eg, GPT-40) in detecting
subtle but clinically vital reasoning flaws. This*ceiling effect”
serves as a critical warning and highlights the indispensable
role of structured, blind expert review as an essential safeguard
in reproductive medicine Al development. Second, building on
this evaluation framework, we offer a practical solution to the
“explainability data bottleneck” in reproductive medicine.
Through systematic comparisons, we show that a selective
few-shot prompting strategy, which is based on the “dua
principles’ of gold-standard depth and representative diversity,
substantially improves the quality and reliability of generated
ART CoTs. This offers a feasible, cost-effective blueprint for
generating trustworthy ART synthetic data at scale, without
requiring immense annotated datasets. Finally, this study
evaluates the clinical reliability of LLM-generated reasoning
in the ART context as a step toward addressing data scarcity in
explainable, domain-specialized Al development. However,
our findings should not be interpreted as evidence that current
LLMs are clinically safe or ready for autonomous use. Our
evaluation focuses on reasoning quality, not deployment
readiness. Establishing clinical go or no-go thresholds will
require task-specific, prospective validation studies assessing
safety, consistency, patient outcomes, and workflow
integration—factors beyond the scope of this work.

The authors used the generative artificial intelligence (Al) tool to examine the potential use of LLMs in assisted reproductive
technology. The authors declare the use of generative Al in the research and writing process. According to the GAIDeT taxonomy
(2025), the following tasks were delegated to generative Al tools under full human supervision: feasibility assessment and risk
evaluation. The generative Al tools used were DeepSeek-R1-671B and ChatGPT40. Responsibility for the final manuscript lies
entirely with the authors. Generative Al tools are not listed as authors and do not bear responsibility for the final outcomes.

Funding

This study was funded by the Science and Technology Department of Sichuan Province Project (2024Y FFK0365), the Natural
Science Foundation of Sichuan, China (2025NSFSC1985), and the 1-3-5 project for disciplines of excellence, West ChinaHospital,

Sichuan University (ZY'Y C21004).

Data Availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

Authors Contributions

Conceptualization: RY, TT, SZ, Di Liu, KL

Data curation: RY, TT, Dou Liu, Y Long

Formal analysis: RY, TT, Dou Liu, Y Long, SZ, Di Liu
Funding acquisition: KL

Investigation: Dou Liu, Y Long

Methodology: Dou Liu, Y Long

https://www.jmir.org/2026/1/e85206

JMed Internet Res 2026 | vol. 28 | €85206 | p. 12
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Livetd

Project administration: RY, TT, KL
Visualization: Dou Liu, Y Long, Y Lin, HL
Writing—original draft: Dou Liu, Y Long
Writing—review and editing: All authors

Conflictsof Interest
None declared.

Multimedia Appendix 1

Detailed description of variables used in the dataset.
[DOCX File, 19 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Chain-of-thought generation prompt.
[DOCX File, 45 KB-Multimedia Appendix 2]

Multimedia Appendix 3

Detailed human evaluation rubric.
[DOCX File, 19 KB-Multimedia Appendix 3]

Multimedia Appendix 4

Statistical results.
[DOCX File, 23 KB-Multimedia Appendix 4]

References

1.  Graham ME, Jelin A, Hoon AH, Wilms Floet AM, Levey E, Graham EM. Assisted reproductive technology: short- and
long-term outcomes. Dev Med Child Neurol. 2023;65(1):38-49. [FREE Full text] [doi: 10.1111/dmcn.15332] [Medline:
35851656]

2. Asplund K. Use of fertilization—ethical issues. Ups JMed Sci. 2020;125(2):192-199. [FREE Full text] [doi:
10.1080/03009734.2019.1684405] [Medline: 31686575]

3. LiuD,LongY, Zuogiu S, Tang T, Yin R. Evaluating the feasibility and accuracy of large language models for medical
history-taking in obstetrics and gynecology. ArXiv. Preprint posted online on March 31, 2025. 2025. [doi:
10.48550/arXiv.2504.00061]

4. HuanglL,HuJ Ca Q,FuG,Bai Z, LiuY, et a. The performance evaluation of artificial intelligence ERNIE bot in Chinese
National Medical Licensing Examination. Postgrad Med J. 2024;100(1190):952-953. [doi: 10.1093/postmj/qgae062]
[Medline: 38813794]

5. McDuff D, Schagkermann M, Tu T, Palepu A, Wang A, Garrison J, et a. Towards accurate differential diagnosis with
large language models. Nature. 2025;642(8067):451-457. [FREE Full text] [doi: 10.1038/s41586-025-08869-4] [Medline:
40205049]

6. LiuD,HanY,Wang X, Tan X, LiuD, Qian G, et a. Evaluating the application of ChatGPT in outpatient triage guidance:
a comparative study. In: Congress of the International Ergonomics Association. Singapore. Springer Nature Singapore;
Aug 25, 2024:233-238.

7. Buckley T, Diao J, Rajpurkar P, Rodman A, Manrai A. Multimodal foundation models exploit text to make medical image
predictions. ArXiv. Preprint posted online on November 25, 2024. [FREE Full text]

8. Luol,NingJ, Zhao Y, Wang Z, Ding Z, Chen P, et al. Talyi: abilingual fine-tuned large language model for diverse
biomedical tasks. JAm Med Inform Assoc. 2024;31(9):1865-1874. [doi: 10.1093/jamia/ocae037] [Medline: 38422367]

9.  Christophe C, Kanithi P, Munjal B, Raha T, Hayat N, Rajan R, et a. Med42—evaluating fine-tuning strategies for medical
LLMs: full-parameter vs. parameter-efficient approaches. ArXiv. Preprint posted online on April 23, 2024. [EREE Full
text] [doi: 10.18653/v1/2025.emnlp-main.1174]

10. ChenZz, Cano A, Romanou A, Bonnet A, MatobaK, Salvi F, et al. MEDITRON-70B: scaling medical pretraining for large
language models. ArXiv. Preprint posted online on November 27, 2023. [FREE Full text] [doi: 10.21203/rs.3.rs-4139743/v1]

11. Miao J, Thongprayoon C, Suppadungsuk S, Krisanapan P, Radhakrishnan Y, Cheungpasitporn W. Chain of thought
utilization in large language models and application in nephrology. Medicina (Kaunas). 2024;60(1):148. [FREE Full text]
[doi: 10.3390/medicina60010148] [Medline: 38256408]

https://www.jmir.org/2026/1/e85206 JMed Internet Res 2026 | vol. 28 | e85206 | p. 13
(page number not for citation purposes)

RenderX


https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app1.docx&filename=aab014188ebea96de9564e470ba5cf48.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app1.docx&filename=aab014188ebea96de9564e470ba5cf48.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app2.docx&filename=780f246a3fcf5f649abcc5c589930846.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app2.docx&filename=780f246a3fcf5f649abcc5c589930846.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app3.docx&filename=576d2144411e11979e87e8106f7fd477.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app3.docx&filename=576d2144411e11979e87e8106f7fd477.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app4.docx&filename=3572da4ddb3ea58bc3c0e1df9dba2ddf.docx
https://jmir.org/api/download?alt_name=jmir_v28i1e85206_app4.docx&filename=3572da4ddb3ea58bc3c0e1df9dba2ddf.docx
https://europepmc.org/abstract/MED/35851656
http://dx.doi.org/10.1111/dmcn.15332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35851656&dopt=Abstract
https://www.tandfonline.com/doi/10.1080/03009734.2019.1684405?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1080/03009734.2019.1684405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31686575&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2504.00061
http://dx.doi.org/10.1093/postmj/qgae062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38813794&dopt=Abstract
https://doi.org/10.1038/s41586-025-08869-4
http://dx.doi.org/10.1038/s41586-025-08869-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40205049&dopt=Abstract
https://arxiv.org/abs/2311.05591v2
http://dx.doi.org/10.1093/jamia/ocae037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38422367&dopt=Abstract
https://arxiv.org/abs/2404.14779v1
https://arxiv.org/abs/2404.14779v1
http://dx.doi.org/10.18653/v1/2025.emnlp-main.1174
https://arxiv.org/abs/2311.16079v1
http://dx.doi.org/10.21203/rs.3.rs-4139743/v1
https://www.mdpi.com/resolver?pii=medicina60010148
http://dx.doi.org/10.3390/medicina60010148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38256408&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Livetd

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

Kim S, Joo S,KimD, Jang J, Ye S, Shin J, et al. The CoT collection: improving zero-shot and few-shot |earning of language
models via chain-of-thought fine-tuning. 2023. Presented at: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing; December 17, 2025:12685-12708; Singapore. [doi: 10.18653/v1/2023.emnlp-main.782]
Singhal K, Tu T, Gottweis J, Sayres R, Wulczyn E, Amin M, et a. Toward expert-level medical question answering with
large language models. Nat Med. 2025;31(3):943-950. [doi: 10.1038/s41591-024-03423-7] [Medline: 39779926]

Ali SR, Dabbs TD, Hutchings HA, Whitaker |IS. Using ChatGPT to write patient clinic letters. Lancet Digit Health.
2023;5(4):e179-e181. [FREE Full text] [doi: 10.1016/S2589-7500(23)00048-1] [Medline: 36894409]

Rauschecker AM, Rudie JD, Xie L, Wang J, Duong MT, Botzolakis EJ, et al. Artificia intelligence system approaching
neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology. 2020;295(3):626-637. [FREE Full text]
[doi: 10.1148/radiol.2020190283] [Medline: 32255417]

LiuY, Jain A, Eng C, Way DH, LeeK, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat
Med. 2020;26(6):900-908. [doi: 10.1038/s41591-020-0842-3] [Medline: 32424212]

Babbar R, Schilkopf B. Data scarcity, robustness and extreme multi-label classification. Mach Learn.
2019;108(8-9):1329-1351. [doi: 10.1007/s10994-019-05791-5]

Villalobos P, Ho A, SevillaJ, Besiroglu T, Heim L, Hobbhahn M. Position: Will we run out of data? Limits of LLM scaling
based on human-generated data. 2024. Presented at: Forty-First International Conference on Machine Learning; July 21-27,
2024:49523-49544; Vienna, Austria. [doi: 10.5555/3692070.3694094]

Dahmen J, Cook D. SynSys: asynthetic data generation system for healthcare applications. Sensors (Basdl). 2019;19(5):1181.
[doi: 10.3390/s19051181] [Medline: 30857130]

El EK, Mosguera L, Hoptroff R. Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of
Data. California. O’ Reilly Media; 2025.

Li Z, ZhuH, Lu Z, Yin M. Synthetic data generation with large language models for text classification: potential and
limitations. ArXiv. Preprint posted online on October 13, 2023. [FREE Full text] [doi: 10.48550/arXiv.2310.07849]
Williams CYK, Subramanian CR, Ali SS, Apolinario M, Askin E, Barish P, et al. Physician- and large language
model-generated hospital discharge summaries. JAMA Intern Med. 2025;185(7):818-825. [doi:
10.1001/jamainternmed.2025.0821] [Medline: 40323616]

Vardhan M, Nathani D, Vardhan S, Aggarwal A, Simini F. Large language models as synthetic electronic health record
datagenerators. 2024. Presented at: IEEE Conferenceon Artificial Intelligence (CAl); June 25-27, 2024:804-810; Singapore.
[doi: 10.1109/cai59869.2024.00152]

Veselovsky V, Ribeiro M, AroraA, Josifoski M, Anderson A, West R. Generating faithful synthetic datawith largelanguage
models: a case study in computational social science. ArXiv. Preprint posted online on May 24, 2023. [doi:
10.48550/arXiv.2305.15041]

Ziems C, Held W, Shaikh O, Chen J, Zhang Z, Yang D. Can large language model s transform computational social science?
Comput Linguist. 2024;50(1):237-291. [doi: 10.1162/coli_a 00502]

Gilardi F, Alizadeh M, Kubli M. ChatGPT outperforms crowd workers for text-annotation tasks. Proc Natl Acad Sci U S
A. 2023;120(30):€2305016120. [doi: 10.1073/pnas.2305016120] [Medline: 37463210]

Wang J, Liang Y, Meng F, Sun Z, Shi H, Li Z, et al. Is ChatGPT agood NLG evaluator? A preliminary study. 2023.
Presented at: Proceedings of the 4th New Frontiers in Summarization Workshop; December 17, 2025:1-11; Singapore.
[doi: 10.18653/v1/2023.newsum-1.1]

Li H, Dong Q, Tang Z, Wang C, Zhang X, Huang H, et a. Synthetic data (almost) from scratch: generalized instruction
tuning for language models. ArXiv. Preprint posted online on February 20, 2024. [doi: 10.48550/arXiv.2402.13064]

Wei J, Wang X, Schuurmans D, Bosma M, XiaF, Chi E, et al. Chain-of-thought prompting elicits reasoning in large
language models. 2022. Presented at: NIPS22: 36th International Conference on Neural Information Processing Systems;
November 28-December 9, 2022:24824-24837; New Orleans, LA, United States. URL: https://dl.acm.org/doi/10.5555/
3600270.3602070 [doi: 10.5555/3600270.3602070]

Sprague Z, Yin F, Rodriguez J, Jiang D, WadhwaM, Singhal B, et a. To CoT or not to CoT? Chain-of-thought helps mainly
on math and symbolic reasoning. ArXiv. Preprint posted online on May 7, 2025. [doi: 10.48550/arXiv.2409.12183]

Yuan X, Shen C, Yan S, Zhang X, XieL, Wang W, et al. Instance-adaptive zero-shot chain-of-thought prompting. 2024.
Presented at: Advancesin Neural Information Processing Systems 37 (Neurl PS 2024); December 10, 2024; Vancouver,
British Columbia, Canada. [doi: 10.52202/079017-3986]

Shi E, Manda A, Chowdhury L, Arun R, Zhu K, Lam M. Enhancing depression diagnosis with chain-of-thought prompting.
ArXiv. Preprint posted online on August 27, 2024. [doi: 10.48550/arXiv.2408.14053]

LiuR,Wei J, LiuF, Si C, Zhang Y, Rao J, et a. Best practices and lessons|learned on synthetic data. ArXiv. Preprint posted
online on August 10, 2024. [doi: 10.48550/arXiv.2404.07503]

Guo D, Yang D, Zhang H, Song J, Wang P, Zhu Q, et a. DeepSeek-R1 incentivizesreasoning in LLMsthrough reinforcement
learning. Nature. 2025;645(8081):633-638. [doi: 10.1038/s41586-025-09422-z] [Medline: 40962978]

Team L, XuW, Chan H, Li L, Aljunied M, Yuan R, et al. Lingshu: a generalist foundation model for unified multimodal
medical understanding and reasoning. ArXiv. Preprint posted online on June 13, 2025. [doi: 10.48550/arXiv.2506.07044]

https://www.jmir.org/2026/1/e85206 JMed Internet Res 2026 | vol. 28 | e85206 | p. 14

(page number not for citation purposes)


http://dx.doi.org/10.18653/v1/2023.emnlp-main.782
http://dx.doi.org/10.1038/s41591-024-03423-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39779926&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-7500(23)00048-1
http://dx.doi.org/10.1016/S2589-7500(23)00048-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36894409&dopt=Abstract
https://europepmc.org/abstract/MED/32255417
http://dx.doi.org/10.1148/radiol.2020190283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32255417&dopt=Abstract
http://dx.doi.org/10.1038/s41591-020-0842-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32424212&dopt=Abstract
http://dx.doi.org/10.1007/s10994-019-05791-5
http://dx.doi.org/10.5555/3692070.3694094
http://dx.doi.org/10.3390/s19051181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30857130&dopt=Abstract
https://arxiv.org/abs/2310.07849
http://dx.doi.org/10.48550/arXiv.2310.07849
http://dx.doi.org/10.1001/jamainternmed.2025.0821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40323616&dopt=Abstract
http://dx.doi.org/10.1109/cai59869.2024.00152
http://dx.doi.org/10.48550/arXiv.2305.15041
http://dx.doi.org/10.1162/coli_a_00502
http://dx.doi.org/10.1073/pnas.2305016120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37463210&dopt=Abstract
http://dx.doi.org/10.18653/v1/2023.newsum-1.1
http://dx.doi.org/10.48550/arXiv.2402.13064
https://dl.acm.org/doi/10.5555/3600270.3602070
https://dl.acm.org/doi/10.5555/3600270.3602070
http://dx.doi.org/10.5555/3600270.3602070
http://dx.doi.org/10.48550/arXiv.2409.12183
http://dx.doi.org/10.52202/079017-3986
http://dx.doi.org/10.48550/arXiv.2408.14053
http://dx.doi.org/10.48550/arXiv.2404.07503
http://dx.doi.org/10.1038/s41586-025-09422-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=40962978&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2506.07044
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Livetd

36. ZhaD, Bhat ZP, La K, Yang F, Jiang Z, Zhong S, et al. Data-centric artificial intelligence: a survey. ACM Comput Surv.
2025;57(5):1-42. [doi: 10.1145/3711118]

37.  Zhou W, Jiang Y E, Cotterell R, Sachan M. Efficient prompting via dynamic in-context learning. ArXiv. Preprint posted
online on May 18, 2023. [doi: 10.48550/arXiv.2305.11170]

Abbreviations

Al: artificial intelligence

ART: assisted reproductive technology

CoT: chain-of-thought

EHR: electronic health record

FDR: falsediscovery rate

HIPAA: Health Insurance Portability and Accountability Act
ICSI: intracytoplasmic sperm injection

IVF: invitrofertilization

LCC: logical coherence and clarity

LLM: largelanguage model

PCAR: plausibility and clinical accuracy of reasoning

PGT: preimplantation genetic testing

PGT-A: preimplantation genetic testing for aneuploidies
PGT-M: preimplantation genetic testing for monogenic disorder
SOTA: state-of-the-art

TESA: testicular sperm aspiration

UCKI: use and coverage of key information

Edited by J Sarvestan; submitted 02.0ct.2025; peer-reviewed by X Zhong, K-H Lin; comments to author 03.Nov.2025; revised version
received 14.Dec.2025; accepted 15.Dec.2025; published 08.Jan.2026

Please cite as:

LiuD, Long Y, Zuogiu S, Liu D, Li K, Lin Y, LiuH, YinR, Tang T

Reliability of Large Language Model Generated Clinical Reasoning in Assisted Reproductive Technology: Blinded Comparative
Evaluation Study

J Med Internet Res 2026; 28:€85206

URL: https://www.jmir.org/2026/1/e85206

doi: 10.2196/85206

PMID:

©Dou Liu, Ying Long, Sophia Zuogiu, Di Liu, Kang Li, Yiting Lin, Hanyi Liu, Rong Yin, Tian Tang. Originally published in
the Journal of Medical Internet Research (https.//www.jmir.org), 08.Jan.2026. This is an open-access article distributed under
thetermsof the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet
Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on
https://www.jmir.org/, as well as this copyright and license information must be included.

https://www.jmir.org/2026/1/e85206 JMed Internet Res 2026 | vol. 28 | e85206 | p. 15
(page number not for citation purposes)

RenderX


http://dx.doi.org/10.1145/3711118
http://dx.doi.org/10.48550/arXiv.2305.11170
https://www.jmir.org/2026/1/e85206
http://dx.doi.org/10.2196/85206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

