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Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a common chronic lung disease. Deep learning (DL), a
data-driven machine learning approach, has gained attention in clinical practice, particularly for diagnosing COPD and grading
its severity. However, systematic evidence of its diagnostic and grading accuracy remains limited, posing challenges for
developing intelligent diagnostic tools.
Objective: This study aimed to systematically estimate the accuracy of DL models for diagnosing and grading COPD,
providing up-to-date evidence for the design and clinical implementation of intelligent detection tools.
Methods: The Cochrane Library, Embase, Web of Science, and PubMed were systematically searched for studies on DL for
diagnosing COPD and grading its severity published up to November 1, 2025. Risk of bias was assessed using the Quality
Assessment of Diagnostic Accuracy Studies-2 tool. Subgroup analyses by the validation set generation method and imaging
data source were conducted, and meta-analyses were performed on the validation sets. For binary outcomes, diagnostic 2×2
tables were synthesized using a bivariate mixed effects model; for multiclass outcomes, accuracy estimates were pooled using
random-effects models.
Results: In total, 56 studies comprising 886,753 participants were included. Inputs were computed tomography (CT) imaging
(n=30), breath sounds or audio (n=12), conventional chest X-ray (n=2), X-ray film (n=2), and other modalities (n=10),
including pulmonary function indices or curves or physiological waveforms, electrocardiograms, volumetric capnography
maps, radiogenetic data, and clinical scores. For binary classification of COPD, DL models yielded a pooled sensitivity of
0.87 (95% CI 0.85‐0.90), specificity of 0.88 (95% CI 0.84‐0.92), diagnostic odds ratio (DOR) of 52 (95% CI 30‐88), and the
area under the summary receiver operating characteristic curve (AUC) of 0.93. For CT-based DL models, pooled sensitivity
was 0.86 (95% CI 0.84‐0.89), specificity was 0.87 (95% CI 0.82‐0.90), DOR was 42 (95% CI 26‐68), and AUC was 0.92.
For respiratory sound–based models, sensitivity was 0.91 (95% CI 0.84‐0.95), specificity was 0.96 (95% CI 0.91‐0.98),
DOR was 237 (95% CI 78‐723), and AUC was 0.98. In multiclass classification, the DL models showed limited accuracy
in discriminating Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages: GOLD stage 0 (84.2%, 95% CI
60.5%‐98.2%), stage 1 (61.7%, 95% CI 40.7%‐80.8%), stage 2 (67.9%, 95% CI 37.6%‐91.7%), stage 3 (70.8%, 95% CI
16.3%‐100%), and stage 4 (70.8%, 95% CI 16.3%‐100%).
Conclusions: This study is the first systematic synthesis of DL applications for COPD detection and GOLD staging. DL
models based on CT images and breath sounds show high accuracy for binary COPD detection, whereas multiclass GOLD
grading remains concerning. These findings support the development and updating of artificial intelligence−assisted COPD
screening tools; however, substantial heterogeneity and limited external validation warrant cautious interpretation. Future
reproducible multicenter studies with standardized reporting are needed.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a prevalent
chronic respiratory illness characterized by persistent airflow
limitation. It is irreversible and progressively worsens over
time, severely affecting patients’ quality of life and life
expectancy [1]. According to the latest World Health
Organization report, COPD is the fourth leading cause of
death worldwide, responsible for over 3 million deaths
each year, leading to a disproportionate burden in low-
and middle-income countries [2]. China accounts for about
one-quarter of the global burden of COPD, with an estima-
ted 99.9 million people affected and a prevalence of 13.7%
among adults aged ≥40 years [3]. Acute exacerbations are
pivotal events in COPD, causing hospital admission and
increasing the risk of mortality. The 5-year mortality rate
after exacerbation is about 50% after hospitalization [4].
A real-world multicenter prospective cohort study in Japan
has reported a 5-year survival rate of 85.4% among COPD
patients, whereas those with very severe airflow limitation
have a reduced 5-year survival rate of 66.1% [5]. Conse-
quently, COPD not only represents a significant public health
issue worldwide but has also become one of the main causes
of disability and death.

In clinical practice, the gold standard for diagnosing
COPD is pulmonary function testing (PFT), which primarily
quantifies expiratory airflow limitation. Based on the Global
Initiative for Chronic Obstructive Lung Disease (GOLD)
guidelines, COPD is defined as the ratio of forced expira-
tory volume in 1 second to forced vital capacity <0.70 (or
the lower limit of normal for individuals of the same age,
sex, and height), measured prior to and following broncho-
dilator use [6]. However, it is challenging to implement
PFT. It requires specialized spirometry equipment and trained
personnel, and participants must repeatedly perform forceful
exhalation maneuvers. Older adults or severely ill patients
often produce false-negative results due to insufficient effort.
In addition, the procedure may induce coughing, dizziness, or
other discomforts and poses a risk of cross-infection under
pandemic conditions or in poorly controlled environments.
These factors limit the application of PFT in community and
primary care settings [7]. Thus, relying solely on conventional
PFT is insufficient for screening COPD. Developing simpler,
non-invasive, and more scalable auxiliary diagnostic methods
for early detection of COPD is, therefore, imperative.

In recent years, deep learning (DL) has attracted signifi-
cant attention in clinical practice. DL is a complex neural
network framework. Common DL models include convolu-
tional neural networks, residual networks, densely connec-
ted networks, inception networks, and vision transformer
models [8]. These models excel at feature extraction and

classification, allowing the automatic learning of high-level
semantic information from large datasets, thereby markedly
improving the precision and efficiency of image process-
ing and signal analysis [9]. Although PFT is recognized
as the gold standard for the auxiliary diagnosis of COPD,
researchers often employ chest imaging (including computed
tomography [CT] scans and X-rays) or respiratory sounds
to develop DL-based alternative or complementary tools for
improving diagnostic efficiency and convenience. However,
these traditional methods heavily rely on researchers’ prior
knowledge, and variations in diagnostic criteria and anno-
tation practices across different teams result in significant
heterogeneity, affecting the reproducibility and generalizabil-
ity of diagnostic outcomes [10,11]. In this context, some
studies have used DL for the automatic diagnosis of COPD,
such as DL-based chest X-ray (CXR), for the classification of
COPD [10] and DL-based cough sound signal analysis [11].
Nevertheless, systematic evidence of the actual performance
and comparative advantages of different DL frameworks in
the diagnosis of COPD is lacking.

Therefore, we conducted a systematic review and meta-
analysis of diagnostic test accuracy studies on DL models
for COPD. Our first objective was to describe the diagnostic
performance of these models for identifying COPD across
different data sources (such as CT images and respiratory
sounds) in both internal and external validation sets. Our
second objective was to assess the performance of DL models
in classifying the severity of COPD, particularly GOLD
stages. We hypothesized that DL models would show good
accuracy for the diagnosis of COPD, whereas their perform-
ance for staging COPD would be more variable and less
stable.

Methods
Study Registration
This systematic review and diagnostic test accuracy meta-
analysis was conducted and reported in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) 2020 statement and the PRISMA-
DTA (Preferred Reporting Items for a Systematic Review
and Meta-analysis of Diagnostic Test Accuracy Studies)
extension, and the search methods were reported follow-
ing PRISMA-S (Preferred Reporting Items for Systematic
reviews and Meta-Analyses literature search extension) [12,
13]. The PRISMA-S checklist is provided in Checklist 1.
The protocol was prospectively registered in PROSPERO
(International Prospective Register of Systematic Reviews;
CRD420251114195 [14]).
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Eligibility Criteria
The inclusion criteria were as follows: (1) original research
that developed a DL model for diagnosing COPD or
classifying COPD severity; (2) studies reported at least one of
the following outcome measures for appraising the accuracy
of DL model: concordance index, the receiver operating
characteristic curve, specificity, sensitivity, precision rate,
accuracy, recall rate, calibration curve, F1-score, or confusion
matrix; and (3) studies published in English.

Exclusion criteria were as follows: (1) conference abstracts
without full-text publication; (2) studies limited to traditional
machine learning, without the development of DL models;
and (3) studies applying DL solely for image segmentation,
without developing models for the diagnosis or classification
of COPD. Although a very small number of the included
studies may have used data from the same public database,
we still included these studies because their DL models
incorporated comparable experimental designs, which helped
us better understand the diagnostic performance of DL
models for COPD.

Data Sources and Search Strategy
The search methods and reporting were guided by PRISMA-
S [12]. Embase, Web of Science, the Cochrane Library,
and PubMed were systematically searched from database
inception to November 1, 2025. The search strategy was
designed by combining medical subject headings and
free-text keywords. To maximize the retrieval of relevant
studies, no restrictions were applied on language or geo-
graphic location. The complete search strategies are provided
in Table S1 in Multimedia Appendix 1.

We screened the reference lists of the included studies
and relevant reviews; we did not search gray literature
or conference proceedings and did not contact authors for
additional data. No published search filters were used. Search
strategies were developed de novo and were not adapted or
reused from prior reviews. We did not conduct a formal peer
review of the search strategy.

Study Selection
The retrieved studies were imported into EndNote. Duplicates
were automatically and manually removed. Subsequently, the
titles and abstracts of the remaining articles were independ-
ently reviewed by 2 authors (YH and YW) to identify
potentially eligible studies. The full texts of these studies
were then assessed to identify eligible studies. Any disagree-
ments at any stage were resolved through discussion with a
third reviewer (TW).

Data Extraction
Before data extraction, a standardized extraction form was
developed. The collected data encompassed study title,
publication year, DOI, country, authors, patient source, study
design, task type, COPD diagnostic criteria, imaging modality
used for modeling, number of COPD cases, total number
of cases, number of COPD cases in the training set, total
number of cases in the training set, method for validation

set generation, external validation, number of COPD cases in
the validation set, total number of cases in the validation set,
and comparison with clinicians (yes or no). Two reviewers
(HY and TW) independently extracted the data, followed by
cross-checking. Any disagreements were addressed through
consultation with a third reviewer (YW).
Risk of Bias in Studies
The QUADAS-2 (Quality Assessment of Diagnostic
Accuracy Studies-2) tool was utilized to appraise the risk of
bias (RoB) of the selected studies. The assessment covered
4 domains: reference standard, index test, patient selection,
as well as flow and timing. Each domain included sev-
eral specific questions, which were answered by “Yes (low
RoB),” “No (high RoB),” or “Unclear (RoB uncertain).” The
overall RoB for each domain was categorized as low, high, or
unclear. The RoB assessment was independently performed
by 2 reviewers (YW and TW), and disagreements were
addressed through discussion with a third reviewer (HY).
Synthesis Methods
For binary classification tasks, a bivariate mixed effects
model was used to pool diagnostic 2×2 contingency tables
for DL for the diagnosis of COPD. In studies without
complete contingency tables, specificity, sensitivity, negative
and positive predictive values, accuracy, and the number of
cases were used to estimate the contingency table. Sensi-
tivity, specificity, negative likelihood ratio (NLR), positive
likelihood ratio (PLR), diagnostic odds ratio (DOR), and
the summary receiver operating characteristic curve with
corresponding 95% CIs were pooled. Deeks’ funnel plot was
applied to examine the small-study effects of the selec-
ted original studies, and clinical applicability was assessed
through nomograms. Subgroup analyses by modality (CT,
respiratory sounds, or CXR) were performed. All meta-anal-
yses were based on validation set data. If a study repor-
ted multiple validation cohorts, each independent validation
cohort was included in the analysis separately. If multiple
models were evaluated on the same validation cohort, only
1 estimate (ie, the primary and final model reported) was
extracted to avoid the nonindependence of the data.

For multiclass classification tasks, the accuracy across
different severity grades was pooled. When the reported
accuracy approached 99%, a double arcsine transformation
was applied before meta-analysis. During the meta-analy-
sis, we utilized the Hartung-Knapp-Sidik-Jonkman modi-
fied method [15]. Due to the potential heterogeneity,
the 95% prediction intervals for the summary estimates
were calculated using the confidence distribution approach
proposed by Nagashima et al [16]. All analyses were carried
out using STATA (version 15.0; StataCorp LLC) or R
(version 4.4.3; R Foundation for Statistical Computing).
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Results
Study Selection
Overall, 5194 records were retrieved from databases.
After excluding 1958 duplicates, we removed 1695 studies
unrelated to the study topic and 492 studies for other reasons.

The titles and abstracts of 1049 studies were checked.
Among them, 969 studies were removed due to irrelevant
or unsuitable study design. The full texts of 80 articles were
assessed for eligibility, among which 24 ineligible studies
were further excluded. Ultimately, 56 studies [10,17-71] were
included (Figure 1).

Figure 1. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for the systematic review and diagnostic
test accuracy meta-analysis, showing the entire process from the database search in Embase, Web of Science, Cochrane Library, and PubMed up to
November 1, 2025, to the literature screening and final inclusion of 56 studies on chronic obstructive pulmonary disease (COPD) in adults.

Study Characteristics
The 56 selected studies were published between 2019 and
2025 across 14 countries, with the majority conducted in
China (n=21) and the United States (n=11). In terms of study
design, there were 39 cohort studies (including retrospective

cohort studies), 16 case-control studies, and 1 retrospective
cross-sectional diagnostic study. Most datasets were derived
from single-center (n=16) or multi-center (n=31) studies,
while 9 studies utilized registry databases. Regarding task
types, 23 studies focused solely on diagnosis, 17 studies
solely on classification, and 16 studies on both diagnosis
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and classification (out of 16). All studies clearly reported the
diagnostic criteria for COPD. The variables of the models
primarily came from CT images (30 studies) and breath sound
or audio data (12 studies); 4 studies used CXRs (including
X-ray films in 2 studies); the remaining 10 studies used other
input data (eg, pulmonary function indicators or curves or
waveforms, electrocardiograms, volumetric carbon dioxide
monitoring, clinical data, imaging-genetic data, or CT-based
scores). The total number of cases was 886,753, with 272,881
in the validation sets and 1,352,782 in the training sets. The
methods for generating the validation set were categorized as
follows: only cross-validation used in 22 studies; only internal
validation in 20 studies; external validation in 9 studies; a
combination of internal and external validation in 3 studies;
and a combination of cross-validation, internal validation,
and external validation in 1 study. One study did not report
its validation strategy (1 study; Table S2 in Multimedia
Appendix 1).
RoB in Studies
In the patient selection domain, all studies employed
consecutive or random case selection and applied appropriate
exclusion criteria, thereby avoiding including inappropriate

cases; therefore, RoB was judged to be low in this domain.
For the index test domain, the included studies generally
applied supervised DL methods with clearly defined decision
rules, and RoB was judged to be mostly low. Regarding the
reference standard, all studies used appropriate diagnostic
criteria capable of effectively distinguishing COPD and its
severity; however, if a study did not explicitly report whether
the reference standard assessment was performed blinded
to the index test, we rated this item as unclear, leading
to an overall judgment of unclear RoB in the reference
standard domain for those studies. For the flow and tim-
ing domain, RoB was generally low, although incomplete
reporting of participant flow and timing resulted in some
unclear judgments. In terms of applicability, patient selection
was largely consistent with the review question, while a
subset of studies raised applicability concerns related to the
index test, the reference standard, or both. In addition, some
studies reported only summary performance metrics (eg,
accuracy) without complete 2×2 contingency tables, which
limited transparency for evidence synthesis and introduced
uncertainty when reconstructing contingency tables (Figures 2
and 3).
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Figure 2. Detailed QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) risk-of-bias assessment process for the included 56
diagnostic accuracy studies on deep learning (DL) models for chronic obstructive pulmonary disease (COPD) [10,17-19,21,23,24,26-29,31-35,37-41,
43-61,63-70,72].
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Figure 3. Summary of QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) risk-of-bias and applicability assessments for the 56
diagnostic accuracy studies on deep learning (DL) models for chronic obstructive pulmonary disease (COPD).

Meta-Analysis of Binary Classification
Tasks

Overall
A total of 43 diagnostic 2×2 contingency tables were
synthesized to appraise the diagnostic accuracy of DL models
for COPD. The pooled results demonstrated that the DL
models yielded a sensitivity of 0.87 (95% CI: 0.85‐0.90),
specificity of 0.88 (95% CI 0.84‐0.92), PLR of 7.4 (95% CI

5.2‐10.5), NLR of 0.14 (95% CI 0.11‐0.18), DOR of 52 (95%
CI 30‐88), and the area under the summary receiver oper-
ating characteristic curve (AUC) of 0.93 (95% CI 0.18‐
1.00; Figures 4 and 5). Deeks’ funnel plot demonstrated no
significant small-study effects (P=.08; Figure 6). Assuming
a pretest probability of 25%, the posttest probability rose to
about 71% for a positive result and decreased to about 5% for
a negative result, suggesting the potential clinical value of the
models in the screening and diagnosis of COPD (Figure 7).

Figure 4. Forest plots of sensitivity and specificity of deep learning (DL) model for binary classification diagnosis of chronic obstructive pulmonary
disease (COPD), summarizing 2×2 contingency table results from 43 validation cohorts in 14 countries from 2019 to 2025 [10,11,17,18,20,22,23,25-
34,38,40,41,43-45,48-51,53,54,56,61,63,67,68,70,73].
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Figure 5. Summary receiver operating characteristic (SROC) curve for the meta-analysis of deep learning (DL) for the diagnosis of chronic
obstructive pulmonary disease (COPD) in the validation sets. AUC: area under the summary receiver operating characteristic curve; SENS:
sensitivity; SPEC: specificity.
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Figure 6. Deeks funnel plot of deep learning (DL) model in the binary classification diagnosis of chronic obstructive pulmonary disease (COPD),
assessing publication bias and small-sample effect based on 43 validation cohorts. ESS: effective sample size.
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Figure 7. The Fagan cursor plot for deep learning (DL) model in the binary classification diagnosis of chronic obstructive pulmonary disease
(COPD), providing the posterior probabilities of positive and negative results with a 25% predetection probability in individuals with suspected
COPD based on the pooled likelihood ratio (43 validation cohorts).

DL Based on CT Images
A total of 30 contingency tables were included. The pooled
sensitivity of the models was 0.86 (95% CI 0.84‐0.89),
specificity was 0.87 (95% CI 0.82‐0.90), PLR was 6.6 (95%
CI 4.8‐9.1), NLR was 0.15 (95% CI 0.12‐0.19), DOR was
42 (95% CI 26‐68), and AUC was 0.92 (95% CI 0.90‐
0.94; Figures S1-S2 in Multimedia Appendix 1). Deeks’ test
indicated potential small-study effects (P=.02; Figure S3 in
Multimedia Appendix 1). Assuming a pretest probability of
25%, the posttest probability rose to 69% for a positive result
and decreased to 5% for a negative result (Figure S4 in
Multimedia Appendix 1).

Among these, 24 contingency tables were derived from
internal validation sets. The pooled sensitivity was 0.86 (95%

CI 0.83‐0.89), specificity was 0.88 (95% CI 0.83‐0.92), PLR
was 7.4 (95% CI 5.0‐10.9), NLR was 0.16 (95% CI 0.12‐
0.20), DOR was 48 (95% CI 26‐86), and AUC was 0.93 (95%
CI 0.90‐0.95; Figures S5–S6 in Multimedia Appendix 1).
Deeks’ funnel plot demonstrated small-study effects (P=.04;
Figure S7 in Multimedia Appendix 1). Assuming a pretest
probability of 25%, the posttest probability increased to about
71% for a positive result and decreased to about 5% for
a negative result (Figure S8 in Multimedia Appendix 1).
Among studies on CT-based DL, most models incorporated
lung parenchymal attenuation patterns related to emphysema.
Some additionally incorporated airway and bronchial wall
morphology; gas trapping and small-airway abnormalities on
inspiratory or expiratory CT; or combined radiomics features
of lung parenchyma, airways, and pulmonary vessels.

JOURNAL OF MEDICAL INTERNET RESEARCH Yang et al

https://www.jmir.org/2026/1/e83459 J Med Internet Res 2026 | vol. 28 | e83459 | p. 10
(page number not for citation purposes)

https://www.jmir.org/2026/1/e83459


A total of 8 contingency tables originated from external
validation sets. The pooled sensitivity was 0.87 (95% CI
0.82‐0.90), specificity was 0.83 (95% CI 0.72‐0.90), PLR
was 5.1 (95% CI 2.9‐8.8), NLR was 0.16 (95% CI 0.11‐
0.23), DOR was 31 (95% CI 14‐72), and AUC was 0.91
(95% CI 1.00‐0.00; Figures S9-S10 in Multimedia Appendix
1). Deeks’ funnel plot demonstrated no small-study effects
(P=.06; Figure S11 in Multimedia Appendix 1). Assuming
a pretest probability of 25%, the posttest probability rose to
about 63% for a positive result and decreased to about 5% for
a negative result (Figure S12 in Multimedia Appendix 1).

To further evaluate potential small-study effects, we
additionally stratified the CT-based validation cohorts by
the number of COPD cases in the validation set. A total
of 15 cohorts were classified as a small-sample subgroup
(COPD cases <100) and 17 cohorts as a large-sample
subgroup (COPD cases ≥100). In the small-sample subgroup,
the pooled sensitivity and specificity were 0.89 (95% CI
0.84‐0.92) and 0.89 (95% CI 0.83‐0.94), respectively, with
an AUC of 0.94 (95% CI 0.92‐0.96). In the large-sample
subgroup, the pooled sensitivity and specificity were slightly
lower at 0.85 (95% CI 0.82‐0.88) and 0.85 (95% CI 0.78‐
0.90), respectively, with an AUC of 0.91 (95% CI 0.88‐0.93;
Figures S13-S16 in Multimedia Appendix 1). Assuming a
pretest probability of 25%, the Fagan nomograms indica-
ted that the posttest probability increased to 74% for a
positive DL result in the small-sample studies and 65% in
the large-sample studies, while it reduced to 4% and 6%
for a negative result, respectively (Figures S17 and S18
in Multimedia Appendix 1). Deeks’ funnel plot asymme-
try tests for the small- and large-sample subgroups were
not statistically significant (P=.34 and P=.15, respectively;
Figures S19 and S20 in Multimedia Appendix 1), suggesting
no strong evidence of small-study effects. However, given
the consistently higher point estimates in the small-sample
subgroup, some degree of small-study effects cannot be
completely ruled out.

DL Based on Respiratory Sounds
A total of 10 contingency tables were included. The pooled
sensitivity was 0.91 (95% CI 0.84‐0.95), specificity was
0.96 (95% CI 0.91‐0.98), PLR was 22.1 (95% CI 9.5‐51.5),
NLR was 0.09 (95% CI 0.05‐0.18), DOR was 237 (95%
CI 78‐723), and AUC was 0.98 (95% CI 0.96‐0.99; Figures
S21-S22 in Multimedia Appendix 1). Deeks’ funnel plot
demonstrated no small-study effects (P=.32; Figure S23 in
Multimedia Appendix 1). With a pretest probability of 25%,
the posttest probability rose to about 88% following a positive
result and decreased to about 3% following a negative result
(Figure S24 in Multimedia Appendix 1). For respiratory
sound–based DL models, lung sounds were recorded using
electronic or digital stethoscopes at standard chest ausculta-
tion sites or obtained from open respiratory sound databa-
ses (eg, RespiratoryDatabase@TR and other multichannel
lung sound datasets) and analyzed as single- or multichannel
signals.

Summary of DL Based on CXR
Only 2 included studies evaluated DL models based on CXR
for the diagnosis of COPD. In a multicenter study, Zou et
al [10] constructed a DL model integrating CXR images and
clinical parameters. This model achieved favorable perform-
ance in internal validation with a sensitivity of 0.96 and a
specificity of 0.86. Conversely, Wang et al [29] constructed
a model solely based on CXR images. Their model yielded
a sensitivity of 0.72 and specificity of 0.31 in the MIMIC-
CXR internal validation set and a sensitivity of 0.72 and
specificity of 0.33 in the Emory-CXR external validation
set. These findings suggest that combining clinical parame-
ters with imaging data may substantially enhance diagnostic
performance, whereas single-image models exhibit limited
specificity.

Summary of DL Based on Externally Applied
Airway Resistance
In the study by Davies [54], a physical simulation device
was utilized to generate surrogate data for training a DL
model. Tubes of varying diameters (3‐25 mm) were installed
in the respiratory tract of healthy participants to independ-
ently modulate inspiratory and expiratory resistance, thereby
simulating COPD-related obstruction. Based on the generated
photoplethysmography signals, a 1D convolutional neural
network achieved an AUC of 0.75 in the binary classifi-
cation of COPD and healthy controls. The accuracy of
the model reached 40%‐88% for real COPD cases, with a
14% misdiagnosis rate in healthy participants. This approach
may offer a low-cost alternative for data-scarce scenarios,
particularly suitable for screening with wearable devices in
primary care. However, since dynamic resistance simulation
was limited, and the sample size for validation was small
(only 4 patients), the model needs to be further optimized.
Multiclass DL for COPD Grading
A total of 6 studies [10,22,31,32,40,44] developed DL models
for GOLD grading of COPD (multiclass classification).
Among these studies, 5 developed models based on CT
images, while Zou et al [10] used CXR images for modeling.
Most studies applied different GOLD classification strategies.
Several studies [10,31,40,44] implemented 5-class classifica-
tion (GOLD 0‐4). In another analysis by Zou [10], a 3-class
strategy was applied (GOLD 0, GOLD 1‐2, GOLD 3‐4).
Sugimori [32] and Yang [22] employed a 4-class strategy
(GOLD 0, 1, 2, 3‐4).

Overall analysis indicated considerable differences in the
accuracy of the DL models for identifying each GOLD stage,
reflecting substantial heterogeneity in model performance.
The pooled results based on a random-effects model were as
follows: the diagnostic accuracy was 0.842 (95% CI 0.605‐
0.982) for GOLD 0, 0.617 (95% CI 0.407‐0.808) for GOLD
1, 0.679 (95% CI 0.376‐0.917) for GOLD 2, 0.708 (95% CI
0.163‐1.000) for GOLD 3, and 0.708 (95% CI 0.163‐1.000)
for GOLD 4 (Figure S25 in Multimedia Appendix 1). These
findings demonstrated that the DL models were unstable in
the identification of mild (GOLD 1) and very severe (GOLD
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4) stages. Given the wide CIs, the diagnostic accuracy was
still limited.

Discussion
Summary of the Main Findings
Current DL models for detecting COPD are primarily
constructed based on CT imaging and respiratory sound data.
The tasks are generally divided into binary and multi-
class classifications. Our findings suggested that in binary
classification tasks, the CT-based models performed well
in internal validation cohorts, with a pooled sensitivity of
0.86 (95% CI 0.83‐0.89) and specificity of 0.88 (95% CI
0.83‐0.92). The models based on respiratory sounds yielded a
sensitivity of 0.91 (95% CI 0.84‐0.95) and specificity of 0.96
(95% CI 0.91‐0.98), indicating a strong exclusion ability.

In multiclass classification tasks, the included studies
mainly focused on the staging of GOLD. Overall analysis
demonstrated that the DL models were unstable for discrimi-
nating between different GOLD stages. This finding supports
our hypothesis that compared with binary diagnosis, the
accuracy and reliability of the DL models for staging COPD
still need to be improved.
Comparison With Previous Reviews
Prior studies have examined the application of CT and
respiratory sounds in the diagnosis of COPD. The systematic
review and network meta-analysis carried out by Balasubra-
manian et al [74] focuses on the diagnostic performance of
CT-guided transthoracic biopsy or fine-needle aspiration in
lung diseases, particularly lung cancer. Their study included
363 studies involving 79,519 patients and reported a pooled
sensitivity of 88.9% but did not address the use of CT in
the diagnosis of COPD. In addition, Arts et al [75] have
evaluated the use of respiratory sounds for diagnosing acute
pulmonary diseases. Their results demonstrate that respiratory
sounds have a sensitivity of 37% (95% CI 30%‐47%) and
specificity of 89% (95% CI 85%‐92%) for diagnosing COPD,
based on approximately 12 relevant studies [75]. Willer et
al [73] have examined the performance of X-ray dark-field
imaging in detecting and evaluating emphysema in patients
with COPD. Their study includes 77 patients and reports that
this imaging modality exhibits high diagnostic performance
for emphysema (correlation coefficient ρ=0.62, P<.0001) and
is closely associated with microstructural changes in the lung.
These findings suggest that dark-field chest imaging may be
a rapid, low-dose, and sensitive tool for the screening and
assessment of COPD. However, their study does not evaluate
the diagnostic accuracy of conventional CXR for COPD.

In contrast, this meta-analysis reported higher diagnostic
performance of the DL models based on CT imaging and
respiratory sounds. The pooled results demonstrated that the
DL models based on CT yielded a sensitivity of 0.86 (95%
CI 0.84‐0.89) and specificity of 0.87 (95% CI 0.82‐0.90),
while respiratory sound–based models yielded a sensitivity
of 0.91 (95% CI 0.84‐0.95) and specificity of 0.96 (95% CI
0.91‐0.98). These results suggest that DL approaches might

outperform traditional diagnostic methods. Earlier research
has also investigated the role of artificial intelligence (AI)
in COPD diagnosis. For instance, Wu et al [72] examined
the potential of machine learning and DL in the detec-
tion, staging, and quantitative analysis of COPD using CT
imaging. However, their review does not clearly differenti-
ate between machine learning and DL, nor does it discuss
in depth the advantages and limitations of image-based AI
models for the diagnosis of COPD.

This study found that the included studies on DL for
diagnosing COPD focused mainly on CT imaging, respira-
tory sounds, CXR, and externally applied airway resistance.
Among these, CT, respiratory sounds, and CXR were the
most frequently used data sources for model development
and carried distinct clinical implications. Chest CT exerts a
crucial role in diagnosing and phenotyping COPD, as it can
identify structural abnormalities, such as airway narrowing
and emphysema, and is recommended by current clinical
guidelines. Our findings demonstrated that the CT-based DL
models offered excellent specificity and sensitivity for the
diagnosis of COPD, suggesting their potential as auxiliary
diagnostic tools in clinical practice. The DL models based on
respiratory sounds, as a non-invasive and portable modality,
also had good diagnostic performance, particularly with high
specificity, indicating potential value in primary screening. In
contrast, the number of studies using CXR remains limi-
ted, and the existing evidence is insufficient to determine
the stability and generalizability of CXR-based DL models
for diagnosing COPD. It should be validated in the future.
Moreover, although a few preliminary studies have explored
the use of externally applied airway resistance to generate
model inputs, the number of studies remains small, and
reproducible, generalizable evidence is lacking. Thus, future
studies are required to assess the utility and reliability of this
approach in clinical practice.

Despite the promise of AI in the diagnosis of COPD,
significant challenges need to be addressed before wide-
spread clinical application, particularly in explainability
and data integration. Although current research demon-
strates encouraging diagnostic performance, a substantial
gap persists between theoretical development and real-world
application. First, most included studies did not thoroughly
examine how variations in imaging protocols, such as scan
parameters or reconstruction algorithms, influence image
features and the performance of DL models. Hence, a
systematic evaluation of these factors is lacking. Second,
as complex neural network frameworks, DL models rely on
large-scale training datasets to improve robustness. How-
ever, most included studies developed models using limited
samples, with only a few utilizing large datasets. The scarcity
of data represents a core bottleneck in model develop-
ment, constraining the generalizability of the models. Future
studies should incorporate richer and more diverse imaging
data. Third, the current model evaluation primarily relied
on internal validation techniques, such as random sam-
pling, cross-validation, or bootstrap methods. While internal
validation sets share similar distributions with training data
and often yield favorable results, they do not accurately
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reflect the generalizability of the models on heterogeneous
datasets. Models should be rigorously externally validated
before real-world application, particularly across institutions
and using datasets obtained under different imaging proto-
cols. Studies based on high-quality external validation remain
scarce, and substantial differences in imaging protocols make
it challenging to interpret model performance in external
validation.

In clinical research and practice, grading disease severity
is as crucial as diagnosing COPD. The widely applied GOLD
classification, which stratifies COPD into 5 grades (0 and
1‐4), reflects significant differences in clinical presentation,
treatment strategies, and prognosis of COPD. Achieving early
and precise grading is therefore of high clinical relevance.
However, only 6 studies have attempted to develop DL
models for grading the severity of COPD, providing limited
evidence. These studies indicate that DL models generally
perform suboptimally in multiclass classification tasks, with
particularly low accuracy for GOLD 1, GOLD 2, and GOLD
4. These models achieve relatively higher accuracy only
for GOLD 0 and GOLD 3, exceeding 70%. Nevertheless,
their stability still needs to be enhanced. This suggests that
multiclass classification itself represents a technical challenge
for DL models. Moreover, under the current dataset size,
label distribution, and model architecture, stable differen-
tiation across all GOLD grades remains difficult. Future
research should aim to enhance the discriminative ability
of models, incorporate richer imaging data, and integrate
clinical information to optimize training strategies, ultimately
developing more accurate and adaptable intelligent tools for
grading the severity of COPD to support clinical decision-
making.
Strengths and Limitations of the Study
This meta-analysis systematically assessed the performance
of DL in the detection of COPD for the first time, pro-
viding evidence to support the development of intelligent
diagnostic tools. The findings indicate that DL models
hold substantial potential for improving diagnostic accuracy,
particularly through noninvasive and nonintrusive detection
methods. This study provides valuable insights. However,
some limitations must be noted. First, although a system-
atic literature search was carried out, the number of studies
focusing on respiratory sounds remained relatively small.
As respiratory sound analysis is an emerging diagnostic
approach, the number and diversity of relevant studies
remain far below those of CT imaging, which may limit
a comprehensive assessment of this method. Second, most
included studies relied primarily on internal validation, and
only relatively few studies performed external validation.
Although internal validation can provide some indication of
diagnostic accuracy, limitations in sample size and valida-
tion methods may compromise the generalizability of the
results. To further confirm the clinical utility of DL mod-
els, future studies should perform external validation. Third,
research on the severity of COPD was relatively scarce, and
some studies employed differing grading strategies. These
variations may affect the reliability of classification models

and the generalizability of their findings. Thus, this finding
should be cautiously interpreted.
Heterogeneity and Clinical Applicability
of DL Models
Although subgroup analyses were performed to explore the
source of heterogeneity, significant heterogeneity still existed
among the subgroups. This heterogeneity may stem from
differences in DL frameworks used in different studies,
such as 2D or 3D convolutional neural networks, multi-
view networks, multi-instance learning, and late fusion. The
included studies used diverse DL models, which differed
in network structure, input format, and parameter settings.
Consequently, their model training and validation methods
may also differ. Therefore, these differences in structure and
parameters can lead to potential heterogeneity, which is a
common challenge in current meta-analyses of DL models.

From the perspective of clinical practicality, DL still holds
significant advantages over traditional radiomics. Traditional
radiomics typically requires manual or semiautomatic image
segmentation, followed by the extraction of a limited number
of manual features, such as texture. An original image is
compressed into a small number of quantitative features,
then to a machine learning model. This multistep process
is time-consuming, highly dependent on the researcher’s
experience, and may lose some original image information
during dimensionality reduction and feature selection. DL, on
the other hand, can directly train models end-to-end based
on labeled (or segmented) images without additional feature
engineering. It can preserve lesion-related image informa-
tion to the greatest extent, potentially improving model
performance and reducing manual operations and time costs.
Therefore, given the relatively ideal diagnostic and grading
accuracy of DL models, it is hoped that AI-assisted diagnostic
DL tools should be developed to support, rather than replace,
clinicians in screening and assessing the severity of COPD.
Future Perspectives
Most current studies are based on relatively limited imaging
datasets and rely mainly on internal validation. Thus, the
reported accuracy may not fully reflect the generalizability
of models. Given substantial between-study heterogeneity
and limited external validation, these findings should be
interpreted cautiously. Future research should improve and
update these DL models by using larger, multicenter imaging
datasets from different geographical regions and scanners,
and by incorporating robust external validation and more
rigorous model development strategies.

To our knowledge, this is the first systematic synthesis
to quantify the diagnostic and grading performance of DL
models across major data sources (eg, CT imaging and
respiratory sounds), showing promising accuracy for binary
COPD detection but suboptimal and less stable performance
for multiclass GOLD staging.

In summary, our comprehensive study on DL provides
an evidence base for guiding the development and external
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validation of AI-assisted screening tools for COPD, especially
given the insufficient application of spirometry.
Conclusions
This study observed that DL models achieved promising
accuracy in the detection of COPD. The models performed
particularly well in binary classification tasks, exhibiting
high sensitivity and specificity. However, its accuracy was
suboptimal in multiclass tasks for grading the severity of
GOLD. In addition, research on respiratory sound analysis

and multiclass classification of COPD severity is still limited.
Given the substantial heterogeneity and limited external
validation, these results should be interpreted cautiously.
Thus, future research should integrate larger and more diverse
imaging datasets, particularly including images from different
racial populations, to develop more robust and generalizable
intelligent diagnostic tools. This approach would not only
enhance the generalizability of models but also improve the
accuracy of diagnosing COPD across diverse patient groups.
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